储能科学与技术 ›› 2018, Vol. 7 ›› Issue (6): 1040-1059.doi: 10.12028/j.issn.2095-4239.2018.0153
许高洁1, 王晓1, 陆迪1,2, 姜苗苗1, 黄苏琪1,3, 上官雪慧1,4, 崔光磊1
收稿日期:
2018-08-18
修回日期:
2018-09-01
出版日期:
2018-11-01
发布日期:
2018-08-28
通讯作者:
崔光磊,研究员,主要研究方向为电化学储能材料及器件,E-mail:cuigl@qibebt.ac.cn。
作者简介:
许高洁(1987-),男,助理研究员,主要研究方向为锂离子电池电解液,E-mail:xugj@qibebt.ac.cn
基金资助:
XU Gaojie1, WANG Xiao1, LU Di1,2, JANG Miaomiao1, HUANG Suqi1,3, SHANGGUAN Xuehui1,4, CUI Guanglei1
Received:
2018-08-18
Revised:
2018-09-01
Online:
2018-11-01
Published:
2018-08-28
Contact:
10.12028/j.issn.2095-4239.2018.0153
摘要: 商品锂离子电池在机械冲击、热冲击和过充短路等滥用条件下易发生起火燃烧甚至爆炸。为了解决这一安全性问题,需要开发高安全性阻燃电解液取代传统易燃烧的碳酸酯电解液。本文综述了高安全性阻燃电解液的研究进展,首先介绍了燃烧机理、阻燃机理和阻燃测试方法,再阐述锂离子电池对阻燃电解液的性质要求,并对阻燃电解液进行分类探讨,包括阻燃添加剂、阻燃溶剂(共溶剂)、高浓度阻燃电解液、离子液体和阻燃型凝胶聚合物电解质。重点对这些高安全性阻燃电解液的配方、阻燃效果、适用的电池体系进行详细阐述。最后对高安全性阻燃电解液未来的研究方向进行展望。
中图分类号:
许高洁, 王晓, 陆迪, 姜苗苗, 黄苏琪, 上官雪慧, 崔光磊. 锂离子电池高安全性阻燃电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 1040-1059.
XU Gaojie, WANG Xiao, LU Di, JANG Miaomiao, HUANG Suqi, SHANGGUAN Xuehui, CUI Guanglei. Research progress of high safety flame retardant electrolytes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1040-1059.
[1] 崔光磊. 动力锂电池中聚合物关键材料[M]. 北京:科学出版社, 2018. CUI G L. Polymer key materials of power lithium batteries[M]. Beijing:Science Press, 2018. [2] FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267. [3] LIU X, REN D S, HSU H J, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2:1-18. [4] 夏兰, 余林颇, 胡笛, 等. 锂离子电池高电压和耐燃电解液研究进展[J]. 化学学报, 2017, 75 (12):1183-1195. XIA L, YU L P, HU D, et al. Research progress and perspectives on high voltage, flame retardant electrolytes for lithium-ion batteries[J]. Acta Chimica Sinica, 2017, 75 (12):1183-1195. [5] XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114 (23):11503-11618. [6] HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes:Progress and perspectives[J]. Energy Environmental Science, 2016, 9 (6):1955-1988. [7] LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4 (6):doi:10.1126/sciadv. aas9820. [8] XU G J, PANG C G, CHEN B B, et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ion batteries[J]. Advanced Energy Materials, 2018, 8 (9):doi:10.1002/aenm.201701398. [9] WANG Q F, LIU P P, LI S Z, et al. A flame retardant ionic conductor additive for safety-reinforced liquid electrolyte of lithium batteries[J]. Journal of the Electrochemical Society, 2017, 164 (7):A1559-A1563. [10] ZHANG J J, KONG Q S, LIU Z H, et al. A highly safe and inflame retarding aramid lithium ion battery separator by a papermaking process[J]. Solid State Ionics, 2013, 245/246:49-55. [11] ZHANG J J, YUE L P, KONG Q S, et al. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery[J]. Scientific Reports, 2014, 4:doi:10.1038/srepo3935. [12] 张建军, 岳丽萍, 刘志宏, 等. 高安全性阻燃动力锂离子电池隔膜[J]. 中国科学:化学, 2014, 44 (7):1069-1080. ZHANG, J J, YUE L P, LIU Z H, et al. Highly safe and flame-retardant separators for power lithium ion batteries[J]. Scientia Sinica Chimica, 2014, 44 (7):1069-1080. [13] YUE L P, ZHANG J J, LIU Z H, et al. A heat resistant and flame-retardant polysulfonamide/polypropylene composite nonwoven for high performance lithium ion battery separator[J]. Journal of the Electrochemical Society, 2014, 161 (6):A1032-A1038. [14] ZHANG B, WANG Q F, ZHANG J J, et al. A superior thermostable and nonflammable composite membrane towards high power battery separator[J]. Nano Energy, 2014, 10:277-287. [15] DING G L, QIN B S, LIU Z H, et al. A polyborate coated cellulose composite separator for high performance lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162 (6):A834-A838. [16] 杜奥冰, 柴静超, 张建军, 等. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5 (5):627-648. DU A B, CHAI J C, ZHANG J J, et al. All-solid lithium-ion batteries based on polymer electrolyes:State of the art, challengs and future trends[J]. Energy Storage Science and Technology, 2016, 5 (5):627-648. [17] NAGASUBRAMANIAN G, FENTON K. Reducing Li-ion safety hazards through use of nonflammable solvents and recent work at Sandia National Laboratories[J]. Electrochimica Acta, 2013, 101:3-10. [18] HARRIS S J, TIMMONS A, PITZ W J. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries[J]. Journal of Power Sources, 2009, 193 (2):855-858. [19] WANG X, YASUKAWA E, KASUYA S. Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries:I. Fundamental properties[J]. Journal of the Electrochemical Society, 2001, 148 (10):A1058-A1065. [20] HESS S, MEHRENS M W, WACHTLER M. Flammability of Li-ion battery electrolytes:Flash point and self-extinguishing time measurements[J]. Journal of the Electrochemical Society, 2015, 162 (2):A3084-A3097. [21] XU K, DING M S, ZHANG S, et al. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. Journal of the Electrochemical Society, 2002, 149 (5):A622-A626. [22] CHANCELIER L, DIALLO A O, SANTINI C C, et al. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage[J]. Physical Chemistry Chemical Physics, 2014, 16 (5):1967-1976 [23] HYUNG Y E, VISSERS D R, AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/121:383-387. [24] YAO X L, XIE S, CHEN C H, et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries[J]. Journal of Power Sources, 2005, 144 (1):170-175. [25] SMITH K A, SMART M C, PRAKASH G K S, et al. Lithium-ion electrolytes containing flame-retardant additives for increased safety characteristics[J]. ECS Transactions, 2009, 16 (35):33-41. [26] SHIM E G, NAM T H, KIM J G, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive[J]. Journal of Power Sources, 2007, 172 (2):919-924. [27] SMART M C, KRAUSE F C, HWANG C, et al. The evaluation of triphenyl phosphate as a flame retardant additive to improve the safety of lithium-ion battery electrolytes[J]. ECS Transactions, 2011, 35 (13):1-11. [28] XIA X, PING P, DAHN J R. The reactivity of charged electrode materials with electrolytes containing the flame retardant, triphenyl phosphate[J]. Journal of the Electrochemical Society, 2012, 159 (11):A1834-A1837. [29] HOGSTROM K C, LUNDGREN H, WILKEN S, et al. Impact of the flame retardant additive triphenyl phosphate (TPP) on the performance of graphite/LiFePO4 cells in high power applications[J]. Journal of Power Sources, 2014, 256:430-439. [30] LIU K, LIU W, QIU Y C, et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J]. Science Advances, 2017, 3 (1):doi:10.1126/sciadv.1601978. [31] WANG Q, SUN J, YAO X, et al. 4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte[J]. Electrochemical and Solid-State Letters, 2005, 8 (9):A467-A470. [32] FENG J K, CAO Y L, AI X P, et al. Tri-(4-methoxythphenyl) phosphate:a new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries[J]. Electrochimica Acta, 2008, 53 (28):8265-8268. [33] ZHOU D, LI W, TAN C, et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184 (2):589-592. [34] SHIM E G, NAM T H, KIM J G, et al. Effects of trioctyl phosphate and cresyl diphenyl phosphate as flame-retarding additives for Li-ion battery electrolytes[J]. Metals and Materials International, 2009, 15 (4):615-621. [35] SHIM E G, NAM T H, KIM J G, et al. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries[J]. Journal of Power Sources, 2008, 175 (1):533-539. [36] SHIM E G, NAM T H, KIM J G, et al. Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries[J]. Electrochimica Acta, 2009, 54 (8):2276-2283. [37] LAI Y, REN C, LU H, et al. Compatibility of diphenyloctyl phosphate as flame-retardant additive with LiNi1/3Co1/3Mn1/3O2/artificial graphite cells[J]. Journal of the Electrochemical Society, 2012, 159 (8):A1267-A1272. [38] NAM N D, PARK I J, KIM J G, et al. Effect of flame-retarding additives on surface chemistry in Li-ion batteries[J]. Materials Research Bulletin, 2012, 47 (10):2811-2814. [39] GAO D, XU J B, LIN M, et al. Ethylene ethyl phosphate as a multifunctional electrolyte additive for lithium-ion batteries[J]. RSC Advances, 2015, 5 (23):17566-17571. [40] TSUBOUCHI S, SUZUKI S, NISHIMURA K, et al. Electrochemical stabilization of self-extinguishing electrolyte solutions with trimethyl phosphate by adding potassium salts[J]. The Journal of Physical Chemistry C, 2018, 122 (24):12657-12664. [41] HE Y B, LIU Q, TANG Z Y, et al. The cooperative effect of tri (β-chloromethyl) phosphate and cyclohexyl benzene on lithium ion batteries[J]. Electrochimica Acta, 2007, 52 (11):3534-3540. [42] 贺艳兵, 唐致远, 陈玉红, 等. 锂离子电池阻燃剂磷酸三 (β-氯乙基)酯[J]. 化学通报, 2007, 70 (3):212-216. HE Y B, TANG Z Y, CHEN Y H, et al. Tri (2-chloroethyl) phosphate as a flame-retardant additive for lithium-ion batteries[J]. Chemistry Bulletin, 2007, 70 (3):212-216. [43] SHIM E G, PARK I J, NAM T H, et al. Electrochemical performance of tris (2-chloroethyl) phosphate as a flame-retarding additive for lithium-ion batteries[J]. Metals and Materials International, 2010, 16 (4):587-594. [44] BAGINSKA M, SOTTOS N R, WHITE S R. Core-shell microcapsules containing flame retardant tris (2-chloroethyl phosphate) for lithium-ion battery applications[J]. ACS Omega, 2018, 3 (2):1609-1613. [45] ASPERN N V, ROSER S, RAD B R, et al. Phosphorus additives for improving high voltage stability and safety of lithium ion batteries[J]. Journal of Fluorine Chemistry, 2017, 198:24-33. [46] NAM N D, PARK I J, KIM J G. Triethyl and tributyl phosphite as flame-retarding additives in Li-ion batteries[J]. Metals and Materials International, 2012, 18 (1):189-196. [47] JIA H, WANG J, LIN F, et al. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes[J]. Chemical Communications, 2014, 50 (53):7011-7013. [48] NAM N D, PARK I J, KIM J G. Tris (4-fluorophenyl) phosphine and tris (2,2,2-trifluoroethyl) phosphite as flame-retarding additives in Li-ion batteries[J]. ECS Transactions, 2011, 33 (22):7-15. [49] WANG J, LIN F, JIA H, et al. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode[J]. Angewandte Chemie, 2014, 53 (38):10099-10104. [50] PIRES J, CASTETS A, TIMPERMAN L, et al. Tris (2,2,2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode[J]. Journal of Power Sources, 2015, 296:413-425. [51] 杨聚平, 王莉, 赵鹏, 等. 锂离子电池电解液阻燃添加剂研究进展[J]. 新材料产业, 2013 (4):64-69. YANG J P, WANG L, ZHAO P, et al. Research progress of electrolyte flame-retardant additives for lithium-ion batteries[J]. Advanced Materials Industry, 2013 (4):64-69. [52] XIANG H F, XU H Y, WANG Z Z, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173 (1):562-564. [53] XIANG H, CHEN J, WANG H. Effect of vinyl ethylene carbonate on the compatibility between graphite and the flame-retarded electrolytes containing dimethyl methyl phosphonate[J]. Ionics, 2011, 17 (5):415-420. [54] XIANG H F, LIN H W, YIN B, et al. Effect of activation at elevated temperature on Li-ion batteries with flame-retarded electrolytes[J]. Journal of Power Sources, 2010, 195 (1):335-340. [55] FENG J, MA P, YANG H, et al. Understanding the interactions of phosphonate-based flame-retarding additives with graphitic anode for lithium ion batteries[J]. Electrochimica Acta, 2013, 114 (114):688-692. [56] ZENG Z, JIANG X, WU B, et al. Bis (2,2,2-trifluoroethyl) methylphosphonate:An novel flame-retardant additive for safe lithium-ion battery[J]. Electrochimica Acta, 2014, 129 (6):300-304. [57] ZHU X, JIANG X, AI X, et al. Bis (2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electrochimica Acta, 2015, 165:67-71. [58] ZHU Y, LUO X, ZHI H, et al. Diethyl (thiophen-2-ylmethyl) phosphonate:A novel multifunctional electrolyte additive for high voltage batteries[J]. Journal of Materials Chemistry A, 2018, 6 (23):10990-11004. [59] LEE C W, VENKATACHALAPATHY R, PRAKASH J. A novel flame-retardant additive for lithium batteries[J]. Electrochemical and Solid-State Letters, 1999, 3 (2):63-65. [60] FEI S T, ALLCOCK H R. Methoxyethoxyethoxyphosphazenes as ionic conductive fire retardant additives for lithium battery systems[J]. Journal of Power Sources, 2010, 195 (7):2082-2088. [61] HARRUP M K, ROLLINS H W, JAMISON D K, et al. Unsaturated phosphazenes as co-solvents for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2014, 278:794-801. [62] KIM C, SHIN D, KIM K, et al. Fluorinated hyperbranched cyclotriphosphazene simultaneously enhances the safety and electrochemical performance of high-voltage lithium-ion batteries[J]. ChemElectroChem, 2016, 3 (6):913-921. [63] XIA L, XIA Y G, LIU Z P. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries[J]. Journal of Power Sources, 2015, 278:190-196. [64] LI X, LI W K, CHEN L, et al. Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries[J]. Journal of Power Sources, 2018, 378:707-716. [65] LIU J W, SONG X, ZHOU L, et al. Fluorinated phosphazene derivative-A promising electrolyte additive for high voltage lithium ion batteries:From electrochemical performance to corrosion mechanism[J]. Nano Energy, 2018, 46:404-414. [66] FENG J K, GAO X P, CI L J, et al. A novel bifunctional additive for 5 V-class, high-voltage lithium ion batteries[J]. RSC Advances, 2016, 6 (9):7224-7228. [67] DAGGER T, LüRENBAUM C, SCHAPPACHER F M, et al. Electrochemical performance evaluations and safety investigations of pentafluoro (phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements[J]. Journal of Power Sources, 2017, 342:266-272. [68] JI Y J, ZHANG P B, LIN M, et al. Toward a Stable electrochemical interphase with enhanced safety on high-voltage LiCoO2 cathode:A case of phosphazene additives[J]. Journal of Power Sources, 2017, 359:391-399. [69] HUANG T, ZHENG X Z, FANG G F, et al. (4-methoxy)-phenoxy pentafluorocyclotriphosphazene as a novel flame retardant and overcharge protection additive for lithium-ion batteries[J]. RSC Advances, 2017, 7 (75):47775-47780. [70] HUANG T, ZHENG X Z, WANG W G, et al. (2-chloro-4-methoxy)-phenoxy pentafluorocyclotriphosphazene as a safety additive for lithium-ion batteries[J]. Materials Chemistry & Physics, 2017, 196:310-314. [71] ZHOU M J, QIN C Y, LIU Z, et al. Enhanced high voltage cyclability of LiCoO2 cathode by adopting poly[bis-(ethoxyethoxyethoxy) phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries[J]. Applied Surface Science, 2017, 403:260-266. [72] WU B B, PEI F, WU Y, et al. An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries[J]. Journal of Power Sources, 2013, 227:106-110. [73] IZQUIERDO-GONZALES S, LI W, LUCHT B L. Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2004, 135 (1):291-296. [74] HU J, JIN Z, ZHONG H, et al. A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries[J]. Journal of Power Sources, 2012, 197 (8):297-300. [75] RECTENWALD M F, GAFFEN J R, RHEINGOLD A L, et al. Phosphoryl-rich flame-retardant ions (FRIONs):Towards safer lithium-ion batteries[J]. Angewandte Chemie, 2014, 53 (16):4173-4176. [76] 秦雪英, 汪靖伦, 张灵志. 锂离子电池有机硅电解液[J]. 化学进展, 2012, 24 (5):810-822. QIN X Y, WANG J L, ZHANG L Z. Organosilicon based electrolytes for lithium-ion batteries[J]. Progress in Chemistry, 2012, 24 (5):810-822. [77] ZHANG H P, XIA Q, WANG B, et al. Vinyl-tris-(methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries[J]. Electrochemistry Communications, 2009, 11 (3):526-529. [78] LI L L, LI L, WANG B, et al. Methyl phenyl bis-methoxy-diethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries[J]. Electrochimica Acta, 2011, 56 (13):4858-4864. [79] CHEN R J, ZHAO Y Y, LI Y J, et al. Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5 (10):5142-5147. [80] XU H W, SHI J L, HU G S, et al. Hybrid electrolytes incorporated with dandelion-like silane-Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries[J]. Journal of Power Sources, 2018, 391:113-119. [81] KIM K, AHN S, KIM H S, et al. Electrochemical and thermal properties of 2,4,6-tris (trifluoromethyl)-1,3,5-triazine as a flame retardant additive in Li-ion batteries[J]. Electrochimica Acta, 2009, 54 (8):2259-2265. [82] CHO Y H, KIM K, AHN S, et al. Allyl-substituted triazines as additives for enhancing the thermal stability of Li-ion batteries[J]. Journal of Power Sources, 2011, 196 (3):1483-1487. [83] CHOI J A, SUN Y K, SHIM E G, et al. Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries[J]. Electrochimica Acta, 2011, 56 (27):10179-10184. [84] BAE S Y, SHIM E G, KIM D W. Effect of ionic liquid as a flame-retarding additive on the cycling performance and thermal stability of lithium-ion batteries[J]. Journal of Power Sources, 2013, 244 (4):266-271. [85] SUBBURAJ T, JO Y N, LEE C W. Effect of monocationic ionic liquids as electrolyte additives on the electrochemical and thermal properties of Li-ion batteries[J]. Current Applied Physics, 2014, 14 (8):1022-1027. [86] YIM T, PARK M S, WOO S G, et al. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness[J]. Nano Letters, 2015, 15 (8):5059-5067. [87] BELOV D G, SHIEH D T. A study of tetrabromobisphenol A (TBBA) as a flame retardant additive for Li-ion battery electrolytes[J]. Journal of Power Sources, 2014, 247 (2):865-875. [88] JIANG L H, WANG Q S, LI K, et al. A self-cooling and flame-retardant electrolyte for safer lithium ion batteries[J]. Sustainable Energy & Fuels, 2018, 2 (6):1323-1331. [89] CHEN S Y, WANG Z X, ZHAO H L, et al. A novel flame retardant and film-forming electrolyte additive for lithium ion batteries[J]. Journal of Power Sources, 2009, 187 (1):229-232. [90] YANG H J, LI Q Y, GUO C, et al. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode[J]. Chemical Communications, 2018, 54 (33):4132-4135. [91] DUNN R P, NADIMPALLI S P V, GUDURU P, et al. Flame retardant co-solvent incorporation into lithium-ion coin cells with thin-film Si anodes[J]. Journal of the Electrochemical Society, 2014, 161 (1):A176-A182. [92] DUNN R P, CAO C N, LUCHT B L. Flame-retardant co-solvent incorporation into lithium-ion coin cells with Si-nanoparticle anodes[J]. Journal of Applied Electrochemistry, 2015, 45 (8):1-8. [93] XU K, ZHANG S S, ALLEN J L, et al. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate[J]. Journal of the Electrochemical Society, 2002, 149 (8):A1079-A1082. [94] XU K, DING M S, ZHANG S S, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries ii. Performance in cell and electrochemical properties[J]. Journal of the Electrochemical Society, 2003, 150 (2):A161-A169. [95] XU K, DING M S, ZHANG S S, et al. Evaluation of fluorinated alkyl phosphates as flame retardants in electrolytes for Li-ion batteries ii. Performance in cell[J]. Journal of the Electrochemical Society, 2003, 150 (2):A170-A175. [96] MURMANN P, MöNNIGHOFF X, ASPERN N V, et al. Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries:Studies on fluorinated compounds deriving from triethyl phosphate[J]. Journal of the Electrochemical Society, 2016, 163 (5):A751-A757. [97] TODOROV Y M, AOKI M, MIMURA H, et al. Thermal and electrochemical properties of nonflammable electrolyte solutions containing fluorinated alkylphosphates for lithium-ion batteries[J]. Journal of Power Sources, 2016, 332:322-329. [98] TODOROV Y M, FUJⅡ K, YOSHIMOTO N, et al. Ion-solvation structure and battery electrode characteristics of nonflammable organic electrolytes based on tris (trifluoroethyl)phosphate dissolving lithium salts[J]. Physical Chemistry Chemical Physics, 2017, 19:31085-31093. [99] MURMANN P, ASPERN N V, JANSSEN P, et al. Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 165 (9):A1935-A1942. [100] ZHANG S S, XU K, JOW T R. Tris (2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003, 113 (1):166-172. [101] FENG J K, SUN X J, AI X P, et al. Dimethyl methyl phosphate:A new nonflammable electrolyte solvent for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184 (2):570-573. [102] XIANG H F, JIN Q Y, WANG R, et al. Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O2[J]. Journal of Power Sources, 2008, 179 (1):351-356. [103] XIANG H F, WANG Q, WANG D Z, et al. Optimizing the compatibility between dimethyl methylphosphonate (DMMP)-based electrolytes and carbonaceous anodes[J]. Journal of Applied Electrochemistry, 2011, 41 (8):965-971. [104] ZENG Z Q, WU B B, XIAO L F, et al. Safer lithium ion batteries based on nonflammable electrolyte[J]. Journal of Power Sources, 2015, 279:6-12. [105] WU L, SONG Z P, LIU L S, et al. A new phosphate-based nonflammable electrolyte solvent for Li-ion batteries[J]. Journal of Power Sources, 2009, 188 (2):570-573. [106] ROLLINS H W, HARRUP M K, DUFEK E J, et al. Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes[J]. Journal of Power Sources, 2014, 263 (5):66-74. [107] DUFEK E J, KLAEHN J R, MCNALLY J S, et al. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes[J]. Electrochimica Acta, 2016, 209:36-43. [108] ARAI J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries[J]. Journal of Applied Electrochemistry, 2002, 32 (10):1071-1079. [109] FANG S H, WANG G J, QU L, et al. Novel mixture of diethylene glycol diethylether and non-flammable methyl-nonafluorobutyl ether as safe electrolyte for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (42):21159-21166. [110] LIU Y, FANG S H, LUO D, et al. Safe electrolytes for lithium-ion batteries based on ternary mixtures of triethylene glycol dimethylether, fluoroethylene carbonate and non-flammable methyl-nonafluorobutyl ether[J]. Journal of the Electrochemical Society, 2016, 163 (9):A1951-A1958. [111] NAGASUBRAMANIAN G, ORENDORFF C J. Hydrofluoroether electrolytes for lithium-ion batteries:Reduced gas decomposition and nonflammable[J]. Journal of Power Sources, 2011, 196 (20):8604-8609. [112] NAOI K, IWAMA E, OGIHARA N, et al. Nonflammable hydrofluoroether for lithium-ion batteries:Enhanced rate capability, cyclability, and low-temperature performance[J]. Journal of the Electrochemical Society, 2009, 156 (4):A272-A276. [113] ZHANG Z C, HU L B, WU H, et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry[J]. Energy & Environmental Science, 2013, 6 (6):1806-1810. [114] LIU Y, FANG S H, SHI P, et al. Ternary mixtures of nitrile-functionalized glyme, non-flammable hydrofluoroether and fluoroethylene carbonate as safe electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2016, 331:445-451. [115] SHI P, FANG S, LUO D, et al. A safe electrolyte based on propylene carbonate and non-flammable hydrofluoroether for high-performance lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164 (9):A1991-A1999. [116] FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nature Nanotechnology, 2018:doi:10.1038/s41565-018-0183-2. [117] XIA L, XIA Y G, WANG C S, et al. 5 V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. Chemelectrochem, 2016, 2 (11):1707-1712. [118] ACHIHA T, NAKAJIMA T, OHZAWA Y. Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries[J]. Journal of the Electrochemical Society, 2009, 156 (6):A483-A488. [119] ABOUIMRANE A, BELHAROUAK I, AMINE K. Sulfone-based electrolytes for high-voltage Li-ion batteries[J]. Electrochemistry Communications, 2009, 11 (5):1073-1076. [120] WU F, XIANG J, LI L, et al. Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries[J]. Journal of Power Sources, 2012, 202 (1):322-331. [121] LI C L, ZHAO Y Y, ZHANG H M, et al. Compatibility betweenLiNi0.5Mn1.5O4 and electrolyte based upon lithium bis (oxalate)borate and sulfolane for high voltage lithium-ion batteries[J]. Electrochimica Acta, 2013, 104 (8):134-139. [122] ISKEN P, DIPPEL C, SCHMITZ R, et al. High flash point electrolyte for use in lithium-ion batteries[J]. Electrochimica Acta, 2011, 56 (22):7530-7535. [123] WANG J H, YAMADA Y, SODEYAMA K, et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery[J]. Nature Communications, 2016, 7:doi:10.1038/ncomms 12032. [124] SUO L, XUE W, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5V-class Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (6):1156-1161. [125] ALVARADO J, SCHROEDER M, ZHANG M H, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21 (4):341-353. [126] WANG X M, YAMADA C, NAITO H, et al. High-concentration trimethyl phosphate-based nonflammable electrolytes with improved charge-discharge performance of a graphite anode for lithium-ion cells[J]. Journal of the Electrochemical Society, 2006, 153 (1):A135-A139. [127] YAMADA A, WATANABE E, WANG J H, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2017, 3 (1):22-29. [128] SHI P, ZHENG H, LIANG X, et al. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries[J]. Chemical Communications, 2018, 54 (35):4453-4456. [129] SHIGA T, KATO Y, KONDO H, et al. Self-extinguishing electrolytes using fluorinated alkyl phosphates for lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5 (10):5156-5162. [130] ZENG Z Q, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 4:1-8. [131] CHEN S, ZHENG J M, Y L, et al. High-efficiency lithium metal batteries with fire-retardant electrolytes[J]. Joule, 2018:doi:10.1016/j.joule.2018.05.002. [132] KIM G T, JEONG S S, JOOST M, et al. Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries[J]. Journal of Power Sources, 2011, 196 (4):2187-2194. [133] CHANCELIER L, DIALLO A O, SANTINI C C, et al. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage[J]. Physical Chemistry Chemical Physics, 2014, 16 (5):1967-1976. [134] ARBIZZANI C, GABRIELLI G, MASTRAGOSTINO M. Thermal stability and flammability of electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196 (10):4801-4805. [135] PATRA J, WANG C H, LEE T C, et al. Mixed ionic liquid/organic carbonate electrolytes for LiNi0.8Co0.15Al0.05O2 electrodes at various temperatures[J]. RSC Advances, 2015, 5 (129):106824-106831. [136] YANG B B, LI C H, ZHOU J H, et al. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries[J]. Electrochimica Acta, 2014, 148:39-45. [137] KIM H T, KANG J, MUN J, et al. Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2015, 4 (2):497-505. [138] NAKAGAWA H, FUJINO Y, KOZONO S, et al. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells[J]. Journal of Power Sources, 2007, 174 (2):1021-1026. [139] LALIA B S, YOSHIMOTO N, EGASHIRA M, et al. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries[J]. Journal of Power Sources, 2010, 195 (21):7426-7431. [140] LI H F, PANG JI, YIN Y P, et al. Application of a nonflammable electrolyte containing Pp13TFSI ionic liquid for lithium-ion batteries using the high capacity cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. RSC Advances, 2013, 3 (33):13907-13914. [141] KIM K, CHO Y H, SHIN H C. 1-ethyl-1-methyl piperidinium bis (trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries[J]. Journal of Power Sources, 2013, 225:113-118. [142] HOFMANN A, SCHULZ M, INDRIS S, et al. Mixtures of ionic liquid and sulfolane as electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2014, 147:704-711 [143] FANG S H, QU L, LUO D, et al. Novel mixtures of ether-functionalized ionic liquids and non-flammable methylper-fluorobutylether as safe electrolytes for lithium metal batteries[J]. RSC Advances, 2015, 5 (43):33897-33904. [144] SHIBUTANI R, TSUTSUMI H. Fire-retardant solid polymer electrolyte films prepared from oxetane derivative with dimethyl phosphate ester group[J]. Journal of Power Sources, 2012, 202:369-373. [145] CAO J W, HE R X, KYU T. Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries[J]. Current Opinion in Chemical Engineering, 2017, 15:68-75. [146] FU G P, SOUCEK M D, KYU T. Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane[J]. Solid State Ionics, 2018, 320:310-315. [147] SHENG O W, JIN C B, LUO J M, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance[J]. Nano Letters, 2018, 18 (5):3104-3112. [148] AKASHI H, SEKAI K, TANAKA K. A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries[J]. Electrochimica Acta, 1998, 43 (10/11):1193-1197. [149] LU Q W, FANG J H, YANG J, et al. Novel cross-linked copolymer gel electrolyte supported by hydrophilic polytetrafluoroethylene for rechargeable lithium batteries[J]. Journal of Membrane Science, 2014, 449:176-183. [150] LI G B, CHEN X, MIAO L X, et al. A hybridized solid-gel nonflammable Li-battery[J]. Journal of Power Sources, 2018, 394:26-34. [151] BAIK J H, KIM D G, LEE J H, et al. Nonflammable and thermally stable gel polymer electrolytes based on crosslinked perfluoropolyether (PFPE) network for lithium battery applications[J]. Journal of Industrial and Engineering Chemistry, 2018, 64:453-460. [152] KIM S, HAN T, JEONG J, et al. A flame-retardant composite polymer electrolyte for lithium-ion polymer batteries[J]. Electrochimica Acta, 2017, 241:553-559. [153] LEE Y S, KIM D W. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer[J]. Electrochimica Acta, 2013, 106:460-464. [154] KUO P L, TSAO C H, HSU C H, et al. A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries[J]. Journal of Membrane Science, 2016, 499:462-469. [155] GUO Q, P HAN Y, WANG H, et al. Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes[J]. RSC Advances, 2016, 6 (103):101638-101644. [156] KARUPPASAMY K, REDDY P A, SRINIVAS G, et al. An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based ionic liquid gel polymer electrolytes (ILGPEs) for rechargeable lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2017, 21 (4):1145-1155. [157] GUO Q P, HAN Y, WANG H, et al. Flame Retardant and stable Li1.5Al0.5Ge1.5 (PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries[J]. The Journal of Physical Chemistry C, 2018, 122 (19):10334-10342. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||