Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (5): 615-626.doi: 10.12028/j.issn.2095-4239.2016.0043
Previous Articles Next Articles
LI Yang, DING Fei, SANG Lin, ZHONG Hai, LIU Xingjiang
Received:
2016-07-06
Revised:
2016-07-30
Online:
2016-09-01
Published:
2016-09-01
LI Yang, DING Fei, SANG Lin, ZHONG Hai, LIU Xingjiang. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626.
[1] WANG Y,ZHONG W H. Development of electrolytes towards achieving safe and high-performance energy-storage devices:A review[J]. ChemElectroChem,2015,2(1):22-36. [2] SCROSATI B,HASSOUN J,SUN Y K. Lithium-ion batteries. A look into the future[J]. Energy & Environmental Science,2011,4(9):3287-3295. [3] 许晓雄,邱志军,官亦标,等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术,2013,2(4):331-341. XU Xiaoxiong,QIU Zhijun,GUAN Yibiao,et al. All-solid-state lithium-ion batteries:State-of-the-art development and perspective[J]. Energy Storage Science and Technology,2013,2(4):331-341. [4] IBAA H,YADA C. Innovative batteries for sustainable mobility[C]. 17th International Meeting on Lithium Batteries, Italy:Como, June 10-14,2014. [5] CLERICUZIO M,PARKER W O,SOPRANI M,et al. Ionic diffusivity and conductivity of plasticized polmer electrolytes:PMFGNMR and complex impedance studies[J]. Solid State Ionics,1995,82(3/4):179-192. [6] ANGULAKSHMI N,KUMAR R S,KULANDAINATHAN M A,et al. Composite polymer electrolytes encompassing metal organic frame works:A new strategy for all-solid-state lithium batteries[J]. J. Phys. Chem. C,2014,118:24240-24247. [7] LIU J,XU J,LIN Y,et al. All-solid-state lithium ion battery:Research and industrial prospects[J]. Acta Chimica Sinica,2013,71(6):869-878. [8] CROCE F,SETTIMI L,SCROSATI B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties[J]. Electrochemistry Communications,2006,8(2):364-368. [9] KUMAR S R,RAJA M,KULANDAINATHAN A M,et al. Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries[J]. RSC Advances,2014,4(50):26171-26175. [10] GERBALDI C,NAIR J R,KULANDAINATHAN M A,et al. Innovative high performing metal organic framework(MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A,2014,2(26):9948-9954. [11] TANG C,HACKENBERG K,FU Q,et al. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers[J]. Nano Letters,2012,12(3):1152-1156. [12] DAIGLE J C,VIJH A,HOVINGTON P,et al. Lithium battery with solid polymer electrolyte based on comb-like copolymers[J]. Journal of Power Sources,2015,279:372-383. [13] KHURANA R,SCHAEFER J L,ARCHER L A,et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes:A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society,2014,136(20):7395-7402. [14] CHOUDHURY S,MANGAL R,AGRAWAL A,et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nat. Commun.,2015,6:doi:10.1038/ncomms10101. [15] INAGUMA Y,ITOH M. Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides[J]. Solid State Ionics,1996,86/87/88,Part 1:257-260. [16] ARBI K,MANDAL S,ROJO J M,et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 £ x £ 0.7. A parallel NMR and electric impedance study[J]. Chem. Mater.,2002,14:1091-1097. [17] MURUGAN R,THANGADURAI V,WEPPNER W. Fast lithium ion conduction in gamet-type Li2La3Zr2O12[J]. Angewandte Chemie International Edition,2007,46(41):7778-7781. [18] KNAUTH P. Inorganic solid Li ion conductors:An overview[J]. Solid State Ionics,2009,180(14/15/16):911-916. [19] KOBAYASHI Y,MIYASHIRO H,TAKEUCHI T,et al. All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte[J]. Solid State Ionics,2002,152/153:137-142. [20] SCHRÖDER C,REN J,RODRIGUES A,et al. Glass-to-crystal transition in Li1+xAlxGe2-x(PO4)3 structural aspects studied by solid state[J]. J. Phys. Chem. C,2014,118:9400-9411. [21] SHARAFI A,MEYER H M,NANDA J,et al. Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. Journal of Power Sources,2016,302:135-139. [22] HAMON Y,DOUARD A,SABARY F,et al. Influence of sputtering conditions on ionic conductivity of LiPON thin films[J]. Solid State Ionics,2006,177(3/4):257-261. [23] VEREDA F,CLAY N,GEROUKI A,et al. A study of electronic shorting in IBDA-deposited LiPON films[J]. Journal of Power Sources,2000,89(2):201-205. [24] VEREDA F,GOLDNER R B,HAAS T E,et al. Rapidly grown IBAD LiPON films with high Li-Ion conductivity and electrochemical stability[J]. Electrochemical and Solid-State Letters,2002,5(11):A239-A241. [25] ZHAO S,FU Z,QIN Q. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition[J]. Thin Solid Films,2002,415(1/2):108-113. [26] XIE J,OUDENHOVEN J F,HARKS P P,et al. Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state li-ion batteries[J]. Journal of the Electrochemical Society,2014,162(3):A249-A254. [27] WEST W C,HOOD Z D,ADHIKARI S P,et al. Reduction of charge-transfer resistance at the solid electrolyte-electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source[J]. Journal of Power Sources,2016,312:116-122. [28] NISULA M,SHINDO Y,KOGA H,et al. Atomic layer deposition of lithium phosphorus oxynitride[J]. Chemistry of Materials,2015,27(20):6987-6993. [29] JOO K H,SOHN H J,VINATIER P,et al. Lithium ion conducting lithium sulfur oxynitride thin film[J]. Electrochemical and Solid-State Letters,2004,7(8):A256-A258. [30] JEE S H,LEE M J,AHN H S,et al. Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries[J]. Solid State Ionics,2010,181(19/20):902-906. [31] WU F,LIU Y,CHEN R,et al. Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries[J]. Journal of Power Sources,2009,189(1):467-470. [32] KANNO R,MURAYAMA M. Lithium ionic conductor thio-LISICON:The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society,2001,148(7):A742-A746. [33] KAMAYA N,HOMMA K,YAMAKAWA Y,et al. A lithium superionic conductor[J]. Nature Materials,2011,10(9):682-686. [34] WHITELEY J M,WOO J H,HU E,et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. Journal of the Electrochemical Society,2014,161(12):A1812-A1817. [35] RANGASAMY E,LIU Z,GOBET M,et al. An iodide-based Li7P2S8I superionic conductor[J]. Journal of the America Chemical Society,2015,137:1384-1387. [36] MIZUNO F,HAYASHI A,TADANAGA K,et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials,2005,17(7):918-921. [37] HAYASHI A,MINAMI K,UJIIE S,et al. Preparation and ionic conductivity of Li7P3S11−z glass-ceramic electrolytes[J]. Journal of Non-Crystalline Solids,2010,356(44/45/46/47/48/49):2670-2673. [38] LIU Z,TANG Y,WANG Y,et al. High performance Li2SeP2S5 solid electrolyte induced by selenide[J]. Journal of Power Sources,2014,260:264-267. [39] HAYASHI A,HAMA S,MINAMI T,et al. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J]. Electrochemistry Communications,2003,5:111-114. [40] KENNEDY J H,ZHANG Z,ECKERT H. XVth international congress on glass ionically conductive sulfide-based lithium glasses[J]. Journal of Non-Crystalline Solids,1990,123(1):328-338. [41] WADA H,MENETRIER M,LEVASSEUR A,et al. Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses[J]. Materials Research Bulletin,1983,18(2):189-193. [42] HAYASHI A,TATSUMISAGO M,MINAMI T. Electrochemical properties for the lithium ion conductive (100-x)(0.6Li2 S·0.4SiS2)·xLi4SiO4 oxysulfide glasses[J]. Journal of the Electrochemical Society,1999,146(9):3472-3475. [43] 邱振平,张英杰,夏书标,等. 无机全固态锂离子电池界面性能研究进展[J]. 化学学报,2015,73:992-1001. QIU Zhenping,ZHANG Yingjie,XIA Shubiao,et al. Research progress on interface properties of inorganic solid state lithium ion batteries[J]. Acta Chimica Sinica,2015,73:992-1001. [44] MO Y,ONG S P,CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material[J]. Chemistry of Materials,2012,24(1):15-17. [45] HAYASHI A,HAMA S,MORIMOTO H,et al. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling[J]. Journal of the American Ceramic Society,2001,84(2):477-79. [46] KONDO S,TAKADA K,YAMAMURA Y. New lithium ion conductors based on Li2S-SiS2 system[J]. Solid State Ionics,1992,53/54/55/56,(Part 2):1183-1186. [47] MINAMI K,HAYASHI A,UJIIE S,et al. Structure and properties of Li2S-P2S5-P2S3 glass and glass-ceramic electrolytes[J]. Journal of Power Sources,2009,189(1):651-654. [48] MERCIER R,MALUGANI J P,FAHYS B,et al. Superionic conduction in Li2S-P2S5-LiI-glasses[J]. Solid State Ionics,1981,5:663-666. [49] UJIIE S,HAYASHI A,TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics,2012,211:42-45. [50] UJIIE S,INAGAKI T,HAYASHI A,et al. Conductivity of 70Li2S·30P2S5 glasses and glass-ceramics added with lithium halides[J]. Solid State Ionics,2014,263:57-61. [51] KIM J G,SON B,MUKHERJEE S,et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources,2015,282:299-322. [52] OHTA N,TAKADA K,ZHANG L,et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials,2006,18(17):2226-2229. [53] OHTA N,TAKADA K,SAKAGUCHI I,et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochemistry Communications,2007,9(7):1486-1490. [54] WOO J H,TREVEY J E,CAVANAGH A S,et al. Nanoscale interface modification of LiCoO2 by Al2O3 atomic layer deposition for solid-state Li batteries[J]. Journal of the Electrochemical Society,2012,159(7):A1120-A1124. [55] SAKUDA A,HAYASHI A,OHTOMO T,et al. LiCoO2 Electrode particles coated with Li2S-P2S5 solid electrolyte for all-solid-state batteries[J]. Electrochemical and Solid-State Letters,2010,13(6):A73-A75. [56] KITAURA H,HAYASHI A,TADANAGA K.,et al. Electrochemical performance of all-solid-state lithium secondary batteries with Li-Ni-Co-Mn oxide positive electrodes[J]. Electrochimica Acta,2010,55(28):8821-8828. [57] KOBAYASHI Y,MIYASHIRO H,TAKEI K,et al. 5V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4[J]. Journal of the Electrochemical Society,2003,150(12):A1577-A1582. [58] YADA C,OHMORI A,IDE K. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries[J]. Advanced Energy Materials,2014,4(9):1079-1098. [59] YUBUCHI S,ITO Y,MATSUYAMA T,et al. 5V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte[J]. Solid State Ionics,2016,285:79-82. [60] OH G,HIRAYAMA M,KWON O,et al. Bulk-type all solid-state batteries with 5V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte[J]. Chemistry of Materials,2016,28(8):2634-2640. [61] KUWATA N,KUDO S,MATSUDA Y,et al. Fabrication of thin-film lithium batteries with 5-V-class LiCoMnO4 cathodes[J]. Solid State Ionics,2014,262:165-169. [62] LI W J,HIRAYAMA M,SUZUKI K,et al. Fabrication and all solid-state battery performance of TiS2/Li10GeP2S12 composite electrodes[J]. Materials Transactions,2016,57(4):549-552. [63] HAYASHI A,OHTOMO T,MIZUNO F,et al. Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes[J]. Electrochimica Acta,2004,50(2/3):893-897. [64] HOVINGTON P,LAGACÉ M,GUERFI A,et al. New lithium metal polymer solid state battery for an ultrahigh energy:Nano C-LiFePO4 versus nano Li1.2V3O8[J]. Nano Letters,2015,15(4):2671-2678. [65] PARK C M,KIM J H,KIM H,et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews,2010,39(8):3115-3141. [66] KOBAYASHI T,INADA T,SONOYAMA N,et al. All solid-state batteries using super ionic conductor, thio-LISICON-electrode electrolyte interfacial design[J]. Mater. Res. Soc.,2005,835:doi:10.1557/PROC-835-K11.1. [67] KOBAYASHI T,YAMADA A,KANNO R. Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON[J]. Electrochimica Acta,2008,53(15):5045-5050. [68] KANNO R,MURAYAMA M,INADA T,et al. A self-assembled breathing interface for all-solid-state ceramic lithium batteries[J]. Electrochemical and Solid-State Letters,2004,7(12):A455-A458. [69] SAKUMA M,SUZUKI K,HIRAYAMA M,et al. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M(M=Sn, Si) alloy electrodes and sulfide-based solid electrolytes[J]. Solid State Ionics,2016,285:101-105. [70] 任建国,王科,何向明,等. 锂离子电池合金负极材料的研究进展[J]. 化学进展,2005,17(4),597-603. REN J G,WANG K,HE X M,et al. Studies of alloy based anode materials for lithium ion batteries[J]. Process in Chemistry,2015,17(4):597-603. [71] ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. J. Power Sources,2011,196(1):13-24. [72] SATO S,UNEMOTO A,IKEDA T,et al. Lithium batteries:Carbon-rich active materials with macrocyclic nanochannels for high-capacity negative electrodes in all-solid-state lithium rechargeable batteries[J]. Small,2016,12(25):3381-3387. [73] NAM D H,KIM J W,LEE J H,et al. Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes[J]. Journal of Materials Chemistry A,2015,3(20):11021-11030. [74] PARK S,LEE K S,YOON Y S. Designing SnOx/C films via co-sputtering as anodes for all-solid-state batteries[J]. Surface and Coatings Technology,2016,294:139-144. [75] PLYLAHAN N,LETICHE M,BARR M K S,et al. All-solid-state lithium-ion batteries based on self-supported titania nanotubes[J]. Electrochemistry Communications,2014,43:121-124. [76] KITAURA H,HAYASHI A,TADANAGA K,et al. High-rate performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode[J]. Journal of Power Sources,2009,189(1):145-148. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[3] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[8] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[9] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[10] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[11] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[12] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[13] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[14] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[15] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||