Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (4): 633-643.doi: 10.12028/j.issn.2095-4239.2017.0071
Previous Articles Next Articles
FANG Xin1, WANG Mingjun2, ZHANG Xiaolong1, LV Hongkun1, YU Zitao3
Received:
2017-05-24
Revised:
2017-06-01
Online:
2017-07-01
Published:
2017-06-05
Contact:
方昕(1988—),男,博士,从事强化传热、相变储能研究,E-mail:fwx918@gmail.com。
FANG Xin1, WANG Mingjun2, ZHANG Xiaolong1, LV Hongkun1, YU Zitao3. Progress of preparation, characterization and heat transfer enhancement of nano-encapsulated phase change materials (NEPCM)[J]. Energy Storage Science and Technology, 2017, 6(4): 633-643.
[1] SALUNKHE P B, SHEMBEKAR P S. A review on effect of phase change material encapsulation on the thermal performance of a system[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5603-5616. [2] GIRO-PALOMA J, MARTÍNEZ M, CABEZA L F, et al. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1059-1075. [3] VELRAJ R, SEENIRAJ R, HAFNER B, et al. Heat transfer enhancement in a latent heat storage system[J]. Solar Energy, 1999, 65(3): 171-180. [4] JAMEKHORSHID A, SADRAMELI S, FARID M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 531-542. [5] HO C, SIAO C R, YAN W M. Thermal energy storage characteristics in an enclosure packed with MEPCM particles: An experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2014, 73: 88-96. [6] 张兴祥, 王馨, 吴文健. 相变材料胶囊制备与应用[M]. 北京: 化学工业出版社, 2009. ZHANG Xingxiang, WANG Xin, WU Wenjian, et al. Preparation and application of phase change capsule materials[M]. Beijing: Chemical Industry Press, 2009. [7] CHEN Z, FANG G. Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4624- 4632. [8] SUKHORUKOV G, FERY A, MÖHWALD H. Intelligent micro-and nanocapsules[J]. Progress in Polymer Science, 2005, 30(8): 885-897. [9] DELGADO M, LÁZARO A, PEÑALOSA C, et al. Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry[J]. Applied Thermal Engineering, 2014, 63(1): 11-22. [10] ARSHADY R. Suspension, emulsion, and dispersion polymerization: A methodological survey[J]. Colloid & Polymer Science, 1992, 270(8): 717-732. [11] FANG Y, LIU X, LIANG X, et al. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage[J]. Applied Energy, 2014, 132: 551-556. [12] FUENSANTA M, PAIPHANSIRI U, ROMERO-SÁNCHEZ M D, et al. Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage[J]. Thermochimica Acta, 2013, 565: 95-101. [13] CHEN Z H, YU F, ZENG X R, et al. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier[J]. Applied Energy, 2012, 91(1): 7-12. [14] LI M G, ZHANG Y, XU Y H, et al. Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change materials[J]. Polymer Bulletin, 2011, 67(3): 541-552. [15] KONUKLU Y, PAKSOY H O, UNAL M. Nanoencapsulation of n-alkanes with poly(styrene-co-ethylacrylate) shells for thermal energy storage[J]. Applied Energy, 2015, 150: 335-340. [16] KWON H J, CHEONG I W, KIM J H. Preparation of n-octadecane nanocapsules by using interfacial redox initiation in miniemulsion polymerization[J]. Macromolecular Research, 2010, 18(9): 923-926. [17] CHO W, KOOK J W, LEE S M, et al. Modification of heat storage ability and adhesive properties of core/shell structured phase change material nanocapsules[J]. Macromolecular Research, 2016, 24(6): 556-561. [18] JIN Z, WANG Y, LIU J, et al. Synthesis and properties of paraffin capsules as phase change materials[J]. Polymer, 2008, 49(12): 2903-2910. [19] CHOI J K, LEE J G, KIM J H, et al. Preparation of microcapsules containing phase change materials as heat transfer media by in-situ polymerization[J]. Journal of Industrial and Engineering Chemistry, 2001, 7(6): 358-362. [20] FANG Y, KUANG S, GAO X, et al. Preparation and characterization of novel nanoencapsulated phase change materials[J]. Energy Conversion and Management, 2008, 49(12): 3704-3707. [21] TUMIRAH K, HUSSEIN M, ZULKARNAIN Z, et al. Nano- encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage[J]. Energy, 2014, 66: 881-890. [22] FANG Y, YU H, WAN W, et al. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials[J]. Energy Conversion and Management, 2013, 76: 430-436. [23] FANG G, LI H, YANG F, et al. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage[J]. Chemical Engineering Journal, 2009, 153(1): 217-221. [24] HU X, HUANG Z, YU X, et al. Preparation and thermal energy storage of carboxymethyl cellulose-modified nanocapsules[J]. Bioenergy Research, 2013, 6(4): 1135-1141. [25] PLATTE D, HELBIG U, HOUBERTZ R, et al. Microencapsulation of alkaline salt hydrate melts for phase change applications by surface thiol-michael addition polymerization[J]. Macromolecular Materials and Engineering, 2013, 298(1): 67-77. [26] HUANG J, WANG T, ZHU P, et al. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials[J]. Thermochimica Acta, 2013, 557: 1-6. [27] GRAHAM M, SHCHUKINA E, DE CASTRO P F, et al. Nanocapsules containing salt hydrate phase change materials for thermal energy storage[J]. Journal of Materials Chemistry A, 2016, 4(43): 16906-16912. [28] HONG Y, WU W, HU J, et al. Controlling supercooling of encapsulated phase change nanoparticles for enhanced heat transfer[J]. Chemical Physics Letters, 2011, 504(4): 180-184. [29] WU W, BOSTANCI H, CHOW L, et al. Heat transfer enhancement of PAO in microchannel heat exchanger using nano-encapsulated phase change indium particles[J]. International Journal of Heat and Mass Transfer, 2013, 58(1): 348-355. [30] LATIBARI S T, MEHRALI M, MEHRALI M, et al. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method[J]. Energy, 2013, 61: 664-672. [31] HONG Y, DING S, WU W, et al. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer[J]. ACS Applied Materials & Interfaces, 2010, 2(6): 1685-1691. [32] BARLAK S, SARA O N, KARAIPEKLI A, et al. Thermal conductivity and viscosity of nanofluids having nanoencapsulated phase change material[J]. Nanoscale and Microscale Thermophysical Engineering, 2016, 20(2): 85-96. [33] GENG L, WANG S, WANG T, et al. Facile synthesis and thermal properties of nanoencapsulated n-dodecanol with SiO2 shell as shape-formed thermal energy storage material[J]. Energy & Fuels, 2016, 30(7): 6153-6160. [34] WANG Y, SHI H, XIA T D, et al. Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated[J]. Materials Chemistry and Physics, 2012, 135(1): 181-187. [35] ZHANG G H, BON S A, ZHAO C Y. Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage[J]. Solar Energy, 2012, 86(5): 1149-1154. [36] FU W, LIANG X, XIE H, et al. Thermophysical properties of n-tetradecane@ polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage[J]. Energy and Buildings, 2017, 136: 26-32. [37] DE CORTAZAR M G, RODRÍGUEZ R. Thermal storage nanocapsules by miniemulsion polymerization[J]. Journal of Applied Polymer Science, 2013, 127(6): 5059-5064. [38] JAMES CLERK M. A treatise on electricity and magnetism[M]. Oxford: Clarendon Press York, 1954. [39] CHARUNYAKORN P, SENGUPTA S, ROY S. Forced convection heat transfer in microencapsulated phase change material slurries: Flow in circular ducts[J]. International Journal of Heat and Mass Transfer, 1991, 34(3): 819-833. [40] LI B, LIU T, HU L, et al. Fabrication and properties of microencapsulated paraffin@ SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380. [41] ZHANG T, WANG Y, SHI H, et al. Fabrication and performances of new kind microencapsulated phase change material based on stearic acid core and polycarbonate shell[J]. Energy Conversion and Management, 2012, 64: 1-7. [42] ZHANG H, WANG X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation[J]. Solar Energy Materials and Solar Cells, 2009, 93(8): 1366-1376. [43] ZHANG P, MA Z, WANG R. An overview of phase change material slurries: MPCS and CHS[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 598-614. [44] VAND V. Theory of viscosity of concentrated suspensions[J]. Nature, 1945, 155: 364-365. [45] YAMAGISHI Y, TAKEUCHI H, PYATENKO A T, et al. Characteristics of microencapsulated PCM slurry as a heat-transfer fluid[J]. AIChE Journal, 1999, 45(4): 696-707. [46] FANG Y, KUANG S, GAO X, et al. Preparation of nanoencapsulated phase change material as latent functionally thermal fluid[J]. Journal of Physics D: Applied Physics, 2008, 42(3): 035407. [47] KURAVI S, KOTA K M, DU J, et al. Numerical investigation of flow and heat transfer performance of nano-encapsulated phase change material slurry in microchannels[J]. Journal of Heat Transfer, 2009, 131(6): 177-181. [48] SEYF H R, WILSON M R, ZHANG Y, et al. Flow and heat transfer of nanoencapsulated phase change material slurry past a unconfined square cylinder[J]. Journal of Heat Transfer, 2014, 136(5): doi: 10.1115/1.4025903. [49] SEYF H R, ZHOU Z, MA H, et al. Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential impingement[J]. International Journal of Heat and Mass Transfer, 2013, 56(1): 561-573. [50] 过增元. 国际传热研究前沿-微细尺度传热[J]. 力学进展, 2000, 30(1): 1-6. GUO Z Y. Frontier of heat transfer-microscale heat transfer[J]. Advances in Mechanics, 2000, 30(1): 1-6. [51] BAI D, ZHANG X, CHEN G, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations[J]. Energy & Environmental Science, 2012, 5(5): 7033-7041. [52] HONEYCUTT J D, ANDERSEN H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J]. Journal of Physical Chemistry, 1987, 91(19): 4950-4963. [53] SONG B, YANG J, ZHAO J, et al. Intercalation and diffusion of lithium ions in a carbon nanotube bundle by ab initio molecular dynamics simulations[J]. Energy & Environmental Science, 2011, 4(4): 1379-1384. [54] RAO Z, WANG S, PENG F. Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study[J]. Applied Energy, 2012, 100: 303-308. [55] RAO Z, WANG S, PENG F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials[J]. International Journal of Heat and Mass Transfer, 2013, 66: 575-584. |
[1] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[2] | Shuankui LI, Yuan LIN, Feng PAN. Research progress in thermal energy storage and conversion technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. |
[3] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[4] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
[5] | Wei WU, Shoucheng LI, Weian XIE. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator [J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. |
[6] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[7] | Dehou XU, Xuezhi ZHOU, Yujie XU, Zhitao ZUO, Haisheng CHEN. Performance law of a new composite seasonal underground thermal storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776. |
[8] | Yuting WU, Subudao MING, Cancan ZHANG, Yuanwei LU. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts [J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. |
[9] | ZHOU Huilin, QIU Yan. Heat storage characteristic and structure optimum inrectangular unit [J]. Energy Storage Science and Technology, 2020, 9(4): 1082-1090. |
[10] | LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. |
[11] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[12] | ZHANG Cancan, WU Yuting, LU Yuanwei. Preparation and comparative analysis of thermophysical properties on low melting point mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2020, 9(2): 435-439. |
[13] | TONG Shanhu, NIE Binjian, LI Zixiao, JIN Yi, DING Yulong, HU Hongli. Investigation of the cold thermal energy storage reefer container for cold chain application [J]. Energy Storage Science and Technology, 2020, 9(1): 211-216. |
[14] | JIN Guang, XIAO Anru, LIU Mengyun. Research progress on heat transfer enhancement technology of phase change energy storage [J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. |
[15] | YANG Zhishun, CHEN Lihua, XIA Zhenhua. Numerical investigation of the thermal mechanism of the solid-liquid phase changing process [J]. Energy Storage Science and Technology, 2019, 8(6): 1217-1223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||