Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (3): 502-511.doi: 10.12028/j.issn.2095-4239.2018.0034
Previous Articles Next Articles
SONG Yuguo1, XU Jiaohui2, LIU Mingyu1, CHEN Xiao1, JIN Bo2, JIANG Qing2
Received:
2018-03-06
Revised:
2018-03-29
Online:
2018-05-01
Published:
2018-04-17
CLC Number:
SONG Yuguo, XU Jiaohui, LIU Mingyu, CHEN Xiao, JIN Bo, JIANG Qing. Study on properties of polypyrrole-coated sulfur-based composite prepared by drop addition method[J]. Energy Storage Science and Technology, 2018, 7(3): 502-511.
[1] DUTTA S, BHAUMIK A, WU K C W. Hierarchically porous carbon derived from polymers and biomass:Effect of interconnected pores on energy applications[J]. Energy & Environmental Science, 2014, 7:3574-3592. [2] PENG S, LI L, HU Y, et al. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications[J]. ACS Nano, 2015, 9(2):1945-1954. [3] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058):928-935. [4] SCROSATI B, GARCHE J. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9):2419-2430. [5] LI L, JACOBS R, GAO P, et al. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes[J]. Journal of the American Chemical Society, 2016, 138(8):2838-2848. [6] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2009, 22(3):587-603. [7] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23):11751-11787. [8] MANTHIRAM A, FU Y, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2012, 46(5):1125-1134. [9] TOUIDJINE A. Lithium sulfur batteries:Mechanisms, modelling and materials conference[J]. Johnson Matthey's International Journal of Research Exploring Science and Technology in Industrial Applications, 2017, 61(4):308-310. [10] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11:19-29. [11] CHEN L, SHAW L L. Recent advances in lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 267:770-783. [12] BARCHASZ C, LEPRêTRE J C, ALLOIN F, et al. New insights into the limiting parameters of the Li/S rechargeable cell[J]. Journal of Power Sources, 2012, 199:322-330. [13] 辛培明, 金波, 侯甲子, 等. 锂硫电池正极材料研究进展[J]. 储能科学与技术, 2015, 4(4):374-381. XIN P M, JIN B, HOU J Z, et al. Research progress of cathode materials for lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2015, 4(4):374-381. [14] ZHANG Q, CHENG X B, HUANG J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4):241-264. [15] WILD M, O'NEILL L, ZHANG T, et al. Lithium sulfur batteries, A mechanistic review[J]. Energy & Environmental Science, 2015, 8:3477-3494. [16] MA L, HENDRICKSON K E, WEI S, et al. Nanomaterials:Science and applications in the lithium-sulfur battery[J]. Nano Today, 2015, 10(3):315-338. [17] SONG M K, CAIMS E J, ZHANG Y. Lithium/sulfur batteries with high specific energy:Old challenges and new opportunities[J]. Nanoscale, 2013, 5:2186-2204. [18] FANG R P, ZHAO S Y, SUN Z H, et al. More reliable lithium-sulfur batteries:Status, solutions and prospects[J]. Advanced Materials, 2017, 29(48):1606823. [19] PENG H J, HUANG J Q, LIU X Y, et al. Healing high-loading sulfur electrodes with unprecedented long cycling life:Spatial heterogeneity control[J]. Journal of the American Chemical Society, 2017, 139(25):8458-8466. [20] YUAN Z, PENG H J, HUANG J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39):6244-6244. [21] PENG H J, HUANG J Q, CHENG X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(24):1700260. [22] XIAO L F, CAO Y L, XIAO J, et al. A soft approach to encapsulate sulfur:polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials, 2012, 24(9):1176-1181. [23] CHENG H, WANG S. Recent progress in polymer/sulphur composites as cathodes for rechargeable lithium-sulphur batteries[J]. Journal of Materials Chemistry A, 2014, 2:13783-13794. [24] WU F, CHEN J, CHEN R, et al. Sulfur/polythiophene with a core/shell structure:Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2011, 115(13):6057-6063. [25] ZHOU L, ZONG Y, LIU Z, et al. A polydopamine coating ultralight graphene matrix as a highly effective polysulfide absorbent for high-energy Li-S batteries[J]. Renewable Energy, 2016, 96:333-340. [26] KAZAZI M. Synthesis and elevated temperature performance of a polypyrrole-sulfur-multi-walled carbon nanotube composite cathode for lithium sulfur batteries[J]. Ionics, 2016, 22(7):1103-1112. [27] XIN P M, JIN B, LI H, et al. Facile synthesis of sulfur-polypyrrole as cathodes for lithium-sulfur batteries[J]. ChemElectroChem, 2017, 4(1):115-121. [28] LIANG X, LIU Y, WEN Z, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries[J]. Journal of Power Sources, 2011, 196(16):6951-6955. [29] WANG C, WAN W, CHEN J T, et al. Dual core-shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1:1716-1723. [30] SUN M, ZHANG S, JIANG T, et al. Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries[J]. Electrochemistry Communications, 2008, 10(12):1819-1822. [31] HOU T Z, XU W T, CHEN X, et al. Lithium bond chemistry in lithium-sulfur batteries[J]. Angewandte Chemie, 2017, 56(28):8178-8182. [32] ZHANG K, XIE K, YUAN K, et al. Enable effective polysulfide trapping and high sulfur loading via pyrrole modified graphene foam host for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(16):7309-7315. [33] YUAN G, WANG H. Facile synthesis and performance of polypyrrole-coated sulfur nanocomposite as cathode materials for lithium/sulfur batteries[J]. Journal of Energy Chemistry, 2014, 23(5):657-661. [34] XU J H, JIN B, Li H, et al. Sulfur/alumina/polypyrrole ternary hybrid material as cathode for lithium-sulfur batteries[J]. International Journal of Hydrogen Energy, 2017, 42(32):20749-20758. [35] HAO G P, TANG C, ZHANG E, et al. Thermal exfoliation of layered metal-organic frameworks into ultrahydrophilic graphene stacks and their applications in Li-S batteries[J]. Advanced Materials, 2017, 29(37):1702829. [36] YU M, MA J, XIE M, et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(11):1602347. [37] ZHENG C, NIU S, LV W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33:306-312. [38] YANG Y, SUN W, ZHANG J, et al. High rate and stable cycling of lithium-sulfur batteries with carbon fiber cloth interlayer[J]. Electrochimica Acta, 2016, 209:691-699. [39] MIAO L, WANG W, YUAN K, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area:A binder-free carbon fiber cloth-sulfur material[J]. Chemical Communications, 2014, 50:13231-13234. [40] ZHOU G, LI L, MA C, et al. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries[J]. Nano Energy, 2015, 11:356-365. [41] FANG R, ZHAO S, HOU P, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016, 28(17):3374-3382. [42] ZEGEYE T A, KUO C F J, CHEN H M, et al. Dual-confined sulfur in hybrid nanostructured materials for enhancement of lithium-sulfur battery cathode capacity retention[J]. ChemElectroChem, 2017, 4(3):636-647. [43] ZHAO Z, WANG S, LIANG R, et al. Graphene-wrapped chromium-MOF (MIL-101)/sulfur composite for performance improvement of high-rate rechargeable Li-S batteries[J]. Journal of Materials Chemistry A, 2014, 2:13509-13512. [44] SHAO H, AI F, WANG W, et al. Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5:19892-19900. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[5] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[6] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[8] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[9] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[10] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[11] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[12] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[13] | Dengfeng JIANG, Yajun CHEN, Yaolong HE, Da BIAN, Hongjiu HU. Role of drying on the mechanical behavior of composite anodes [J]. Energy Storage Science and Technology, 2022, 11(3): 957-963. |
[14] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[15] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||