[1] 向红吉, 戴朝华, 明杰, 等. 考虑低谷时刻负调峰能力及风电预测区间的多目标机组组合优化研究[J]. 电网技术, 2017, 41(6):1912-1918. XIANG Hongji, DAI Chaohua, MING Jie, et al. Research on multi-objective optimization of unit commitment considering negative peak load regulation ability in valley load period and wind power prediction interval[J]. Power System Technology, 2017, 41(6):1912-1918.
[2] 刘英军, 刘畅, 王伟, 等. 储能发展现状与趋势分析[J]. 中外能源, 2017, 22(4):80-88. LIU Yingjun, LIU Chang, WANG Wei, et al. Analysis of development status and trend of energy storage technology[J]. Sino-Global Energy, 2017, 22(4):80-88.
[3] 陈海生, 刘畅, 齐智平. 分布式储能的发展现状与趋势[J]. 中国科学院院刊, 2016, 31(2):224-231. CHEN Haisheng, LIU Chang, QI Zhiping. Developing trend and present status of distributed energy storage[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(2):224-231.
[4] 李建林, 马会萌, 袁晓冬, 等. 规模化分布式储能的关键应用技术研究综述[J]. 电网技术, 2017, 41(10):3365-3375. LI Jianlin, MA Huimeng, YUAN Xiaodong, et al. overview on key applied technologies of large-scale distributed energy storage[J]. Power System Technology, 2017, 41(10):3365-3375.
[5] 孙玲玲, 高赐威, 谈健, 等. 负荷聚合技术及其应用[J]. 电力系统自动化, 2017, 41(6):159-167. SUN Lingling, GAO Ciwei, TAN Jian, et al. Load aggregation technology and its applications[J]. Automation of Electric Power Systems, 2017, 41(6):159-167.
[6] 杨永标, 颜庆国, 徐石明, 等. 公共楼宇空调负荷参与电网虚拟调峰的思考[J]. 电力系统自动化, 2015, 39(17):103-107. YANG Yongbiao, YAN Qingguo, XU Shiming, et al. Thinking of public building air-conditioning load participating in grid with virtual peak clipping[J]. Automation of Electric Power Systems, 2015, 39(17):103-107.
[7] 刘萌, 梁雯, 张岩, 等. 计及空调负荷群控制的源-荷协同优化调度模型[J]. 电网技术, 2017, 41(4):1230-1236. LIU Meng, LIANG Wen, ZHANG Yan, et al. Cooperative generation load optimal dispatching model considering air-conditioning load group control[J]. Power System Technology, 2017, 41(4):1230-1236.
[8] 李作锋, 范洁, 杨永标, 等. 面向电网调峰辅助服务的规模化空调负荷优化调度研究[J]. 电器与能效管理技术, 2018(2):64-72. LI Zuofeng, FAN Jie, YANG Yongbiao, et al. Research on large-scale air-conditioning load optimal dispatch for power grid peak clipping[J]. Electrical & Energy Management Technology, 2018(2):64-72.
[9] LIU H, GE S. Optimization of TOU price of electricity based on Electric Vehicle orderly charge[C]//Power and Energy Society General Meeting, IEEE, 2013:1-5.
[10] 沈瑜, 岳园园, 闫华光, 等. 地区电网需求响应资源聚合与调控策略研究[J]. 电网技术, 2017, 41(10):3341-3347.SHEN Yu, YUE Yuanyuan, YAN Huaguang, et al. Research on aggregation and optimization strategies of demand response resources for district power grid[J]. Power System Technology, 2017, 41(10):3341-3347.
[11] 杨铮, 彭思成, 廖清芬, 等. 面向综合能源楼宇的电动汽车辅助服务方案[J]. 电网技术, 2017, 41(9):2831-2839. YANG Zheng, PENG Sicheng, LIAO Qingfen, et al. ancillary services provided by electric vehicles for building integrated energy system[J]. Power System Technology, 2017, 41(9):2831-2839.
[12] 高赐威, 李倩玉, 李扬. 基于DLC的空调负荷双层优化调度和控制策略[J]. 中国电机工程学报, 2014, 34(10):1546-1555. GAO Ciwei, LI Qianyu, LI Yang. Bi-level optimal dispatch and control strategy for air-conditioning load based on direct load control[J]. Proceedings of the CSEE, 2014, 34(10):1546-1555.
[13] KARA E C, MACDONALD J S, BLACK D, et al. Estimating the benefits of electric vehicle smart charging at non-residential locations:A data-driven approach[J]. Applied Energy, 2015, 155:515-525.
[14] 曹瑛, 刘建锋, 龚锦霞. 面向负荷聚合商的风光消纳调度优化模型[J]. 可再生能源, 2018, 36(4):563-567. CAO Ying, LIU Jianfeng, GONG Jinxia. Optimization model for wind and solar power accommodation based on load aggregator[J]. Renewable Energy Resources, 2018, 36(4):563-567.
[15] HE H, SANANDAJI B M, POOLLA K, et al. Aggregate flexibility of thermostatically controlled loads[J]. IEEE Transactions on Power Systems, 2015, 30(1):189-198.
[16] LIU B, WANG L, JIN Y H, et al. Improved particle swarm optimization combined with chaos[J]. Chaos Solitons & Fractals, 2005, 25(5):1261-1271.
[17] 郭玉天. 含分布式电源的配电网重构研究[D]. 保定:华北电力大学, 2013. GUO Tianyu. Research on the reconfiguration in distribution network with distributed generations[D]. Baoding:North China Electric Power University, 2013.
[18] PJM energy market data[EB/OL].[2018-11-12]. https://www.pjm.com/markets-and-operations/energy.aspx.
[19] BENINI M, CANEVESE S, CIRIO D, et al. Battery energy storage systems for the provision of primary and secondary frequency regulation in Italy[C]//IEEE International Conference on Environment & Electrical Engineering, IEEE, 2016:1-6.
[20] WHITE C D, ZHANG K M. Using vehicle-to-grid technology for frequency regulation and peak-load reduction[J]. Journal of Power Sources, 2011, 196(8):3972-3980. |