1 |
刘江永, 刘文翰, 易灵芝. 多时序协同中期负荷预测模型[J]. 电力系统及其自动化学报, 2020, 32(2): 48-53.
|
|
LIU Jiangyong, LIU Wenhan, YI Lingzhi. Multi-sequence coordinated medium-term load forecasting model[J]. Proceedings of the CSU-EPSA, 2020, 32(2): 48-53.
|
2 |
张凝, 徐皑冬, 王锴, 等. 基于粒子滤波算法的锂离子电池剩余寿命预测方法研究[J]. 高技术通讯, 2017, 27(8): 699-707.
|
|
ZHANG Ning, XU Aidong, WANG Kai, et al. Research on prediction of the remaining useful life of lithium-ion batteries based on particle filtering[J]. Chinese High Technology Letters, 2017, 27(8): 699-707.
|
3 |
张朝龙, 何怡刚, 袁莉芬. 基于EEMD和MKRVM的锂电池剩余寿命预测方法[J]. 电力系统及其自动化学报, 2018, 30(7): 38-44.
|
|
ZHANG Chaolong, HE Yigang, YUAN Lifen. Prediction approach for remaining useful life of lithium-ion battery based on EEMD and MKRVM[J]. Proceedings of the CSU-EPSA, 2018, 30(7): 38-44.
|
4 |
刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292.
|
|
LIU Yuefeng, ZHAO Guangquan, PENG Xiyuan. A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47(6): 1285-1292.
|
5 |
马彦, 陈阳, 张帆, 等. 基于扩展H_∞粒子滤波算法的动力电池寿命预测方法[J]. 机械工程学报, 2019, 55(20): 36-43.
|
|
MA Yan, CHEN Yang, ZHANG Fan, et al. Remaining useful life prediction of power battery based on extend H_∞ particle filter algorithm[J]. Journal of Mechanical Engineering, 2019, 55(20): 36-43.
|
6 |
王一宣, 李泽滔. 基于改进支持向量回归机的锂离子电池剩余寿命预测[J]. 汽车技术, 2020(2): 28-32.
|
|
WANG Yixuan, LI Zetao. Prediction for lithium-ion battery remaining useful life based on improved SVR[J]. Automobile Technology, 2020(2): 28-32.
|
7 |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
|
8 |
赵健, 樊彦国, 张音. 基于EEMD-BP组合模型的区域海平面变化多尺度预测[J]. 系统工程理论与实践, 2019, 39(10): 2713-2722.
|
|
ZHAO Jian, FAN Yanguo, ZHANG Yin. Multi-scale prediction of regional sea level variations based on EEMD-BP combined model[J]. Systems Engineering —Theory & Practice, 2019, 39(10): 2713-2722.
|
9 |
邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术, 2020, 44(2): 593-602.
|
|
DENG Daiyu, LI Jian, ZHANG Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2019, 55(20): 36-43.
|
10 |
赵健, 樊彦国, 张音. 基于EEMD-BP组合模型的区域海平面变化多尺度预测[J]. 系统工程理论与实践, 2019, 39(10): 2713-2722.
|
|
ZHAO Jian, FAN Yanguo, ZHANG Yin. Multi-scale prediction of regional sea level variation based on EEMD-BP combined model[J]. Systems Engineering-Theory & Practice, 2019, 39(10): 2713-2722.
|
11 |
MO Baohua, YU Jingsong, TANG Diyin, et al. A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter[C]//IEEE International Conference on Prognostics & Health Management, IEEE, 2016.
|
12 |
GAN Dahua, WANG Yi, ZANG Ning, et al.Enhancing short-term probabilistic residential load forecasting with quantile long-short-term memory[J]. The Journal of Engineering, 2017(14): 2622-2627.
|
13 |
罗伟林, 张立强, 吕超, 等. 锂离子电池寿命预测国外研究现状综述[J]. 电源学报, 2013(1): 140-144.
|
|
LUO Weilin, ZHANG Liqiang, Chao LYU, et al. Review on foreign status of life prediction of lithium-ion batteries[J]. Journal of Power Supply, 2013(1): 140-144.
|
14 |
MA Yan, CHEN Yang, ZHOU Xiuwen, et al. Remaining useful life prediction of lithium-ion battery based on Gauss-Hermite particle filter[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1788-1795.
|