Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 27-39.doi: 10.19799/j.cnki.2095-4239.2020.0306
• Energy Storage Materials and Devices • Previous Articles Next Articles
Ziwei LAN(), Jianru ZHANG, Yuanyuan LI, Ruheng XI, Duan ZHAO, Caihong ZHANG()
Received:
2020-09-03
Revised:
2020-09-13
Online:
2021-01-05
Published:
2021-01-08
Contact:
Caihong ZHANG
E-mail:momlanzw@foxmail.com;qhnu2020@163.com
CLC Number:
Ziwei LAN, Jianru ZHANG, Yuanyuan LI, Ruheng XI, Duan ZHAO, Caihong ZHANG. Research progress of mono/binary composite cathode materials based on lithium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2021, 10(1): 27-39.
Table 1
Comparison table based on electrochemical performance of a mono/binary composite cathode materials and a single cathode material"
正极材料 | 初始放电比容量/mA·h·g-1 | 第N次放电比容量 /mA·h·g-1 | 倍率性能 /mA·h·g-1 | 容量保持率/% | 参考文献 |
---|---|---|---|---|---|
LiNi0.8Co0.15Al0.05O2 | 200.5 (0.1 C) | 168.4 (0.5 C,100次) | 125.3 (5 C) | 77.0 (5 C,100次) | [ |
LiNi0.8Co0.15Al0.05O2/石墨烯 | 206.8 (0.1 C) | 190.2 (0.5 C,100次) | 153.6 (5 C) | 82.1 (5 C,100次) | [ |
LiFePO4 | ~140 (0.1 C) | ~83 (5 C,100次) | ~95 (5 C) | 87.3 (5 C,100次) | [ |
LiFePO4/CNF | ~150 (0.1 C) | ~99 (5 C,100次) | ~98 (5 C) | 98.4 (5 C,100次) | [ |
LiNi1/3Co1/3Mn1/3O2 | 207.6 (0.2 C) | 188.8 (0.2 C,100次) | 87.4 (5 C) | 84.39 (0.2 C,100次) | [ |
LiNi1/3Co1/3Mn1/3O2/PTPAn | 223.7 (0.2 C) | 137.3 (0.2 C,100次) | 127.3 (5 C) | 66.13 (0.2 C,100次) | [ |
石墨烯/Y2O3/LiNi0.8Co0.15Al0.05O2 | 191 (0.1 C) | 180 (0.5 C,100次) | 146 (5 C) | 92 (0.5 C,100次) | [ |
LiCoO2 | 136 (0.2 C) | 135.2 (1 C,100次) | 106.8 (10 C) | 87.4 (1 C,100次) | [ |
LiCoO2/LiNi0.8Co0.15Al0.05O2 | 172.1 (0.2 C) | 149.1 (1 C,100次) | 136 (10 C) | 89.8 (1 C,100次) | [ |
Li[Li0.2Mn0.54Ni0.13Co0.13]O2 | 271.9 (0.1 C) | 207.8 (0.1 C,50次) | — | 76.4 (0.1 C,50次) | [ |
Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 | 274.0 (0.1 C) | 242.5 (0.1 C,50次) | — | 88.5 (0.1 C,50次) | [ |
Li2MnO3 | 320 (10 mA/g) | 156 (10 mA/g,50次) | 9 (400 mA/g) | 48.7 (10 mA/g,50次) | [ |
LiMn2O4 | 290 (10 mA/g) | 197 (10 mA/g,50次) | 170 (400 mA/g) | 67.9 (10 mA/g,50次) | [ |
Li2MnO3-LiMn2O4 | 388 (10 mA/g) | 196 (10 mA/g,50次) | 235 (400 mA/g) | 60.5 (10 mA/g,50次) | [ |
Li[Li0.2Mn0.54Ni0.13Co0.13]O2-LiMn1.5Ti0.5O4 | 220 (20 mA/g) | 198 (20 mA/g,40次) | 195 (400 mA/g) | 90 (20 mA/g,40次) | [ |
LiNi0.82Co0.12Mn0.06O2 | 184.9 (1 C) | 130.63 (1 C,500次) | 180.1 (5 C) | 70.65 (1 C,500次) | [ |
LiNi0.82Co0.12Mn0.06O2/LiFePO4 | 180.3 (1 C) | 165.3 (1 C,500次) | 176.3 (5 C) | 91.65 (1 C,500次) | [ |
Fig.1
(a) schematic illustration of preparation process of G/NCA cathode composite material; cathode material was composed of different proportions graphene (such as 0.5%, 1%, 2% and 5%) and NCA (b) initial charge-discharge curves at 0.1 C rate; (c) specific capability at different current rate[10]"
Fig.2
Initial charge-discharge curves (a) and cycling performances (b) of NCM cathode material and various differentproportions NCM/PTPAn composite cathode materials, and charge-discharge curves of different cycles for pristine NCM (c) and NCM/PTPAn-5.0% composite cathode material (d) in voltage range of 2.5~4.5 V and at current density of 0.2 C[8]"
1 | LI M, LU Jun, CHEN Zhongwei, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): doi: 10.1002/adma.201800561. |
2 | KANG K, MENG Y S, BREGER J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980. |
3 | LI Wangda, SONG Bohang, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059. |
4 | YANG Xuerui, LIN Min, ZHENG Guorui, et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy[J]. Advanced Functional Materials, 2020, 30(43): doi: 10.1002/adfm.202004664. |
5 | XIA Hui, LUO Zhentao, XIE Jianping. Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries[J]. Progress in Natural Science: Materials International, 2012, 22(6): 572-584. |
6 | MYUNG S, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. |
7 | MAKHONINA E V, MEDVEDEVA A E, DUBASOVA V S, et al. LiFePO4-LiMn2O4 composite cathode materials for lithium-ion batteries[J]. Inorganic Materials, 2015, 51(12): 1264-1269. |
8 | YANG Xinli, BAO Chenguang, XIE Lingling, et al. Preparation of LiNi1/3Co1/3Mn1/3O2/polytriphenylamine cathode composites with enhanced electrochemical performances towards reversible lithium storage[J]. Ceramics International, 2019, 45(8): 9726-9735. |
9 | 张林, 张静, 陈剑峰, 等. 锂离子电池正极材料共混改性研究进展[J]. 储能科学与技术, 2019, 8(5): 838-842. |
ZHANG Lin, ZHANG Jing, CHEN Jianfeng, et al. Research progress in blending modification cathode materials for lithium ion batteries[J]. Energy Storage Science Technology, 2019, 8(5): 838-842. | |
10 | LUO Wen, LIU Long, LI Xinxi, et al. Templated assembly of LiNi0.8Co0.15Al0.05O2/graphene nano composite with high rate capability and long-term cyclability for lithium ion battery[J]. Journal of Alloys and Compounds, 2019, 810: doi: 10.1016/j.jallcom.2019.151786. |
11 | ADEPOJU A A, WILLIAMS Q L. High C-rate performance of LiFePO4/carbon nanofibers composite cathode for Li-ion batteries[J]. Current Applied Physics, 2020, 20(1): 1-4. |
12 | LOGHAVI M M, EQRA R, MOHAMMADI-MANESH H. Preparation and characteristics of graphene/Y2O3/LiNi0.8Co0.15Al0.05O2 composite for the cathode of lithium-ion battery[J]. Journal of Electroanalytical Chemistry, 2020, 862: doi: 10.1016/j.jelechem.2020.113971. |
13 | 薛江陪, 姜春海, 邹智敏, 等. LiCoO2/LiNi0.8Co0.15Al0.05O2混合正极的颗粒级配与电化学性能[J]. 材料研究学报, 2019, 33(3): 170-176. |
XUE Jiangpei, JIANG Chunhai, ZOU Zhimin, et al. Electrochemical properties of LiCoO2/LiNi0.8Co0.15Al0.05O2 blended cathode materials with varied grain-gradations[J]. Chinese Journal of Materials Research, 2019, 33(3): 170-176. | |
14 | WU Feng, WANG Zhao, SU Yuefeng, et al. Li[Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 20-25. |
15 | KATAOKA R, TAGUCHI N, KOJIMA T, et al. Improving the oxygen redox stability of NaCl-type cation disordered Li2MnO3 in a composite structure of Li2MnO3 and spinel-type LiMn2O4[J]. Journal of Materials Chemistry A, 2019, 7(10): 5381-5390. |
16 | WANG Sihui, WU Yan, LI Yixiao, et al. Li[Li0.2Mn0.54Ni0.13Co0.13]O2-LiMn1.5Ti0.5O4 composite cathodes with improved electrochemical performance for lithium ion batteries[J]. Electrochimica Acta, 2014, 133: 100-106. |
17 | ZHONG Zeqin, CHEN Lingzhen, ZHU Chengben, et al. Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance[J]. Journal of Power Sources, 2020, 464: doi: 10.1016/j.jpowsour.2020.228235. |
18 | CHEN Yinghao, TIAN Yulan, QIU Yunzhong, et al. Synthesis and superior cathode performance of sandwiched LiMn2O4@rGO nanocomposites for lithium-ion batteries[J]. Materials Today Advances, 2019, 1: doi:10.1016/j.mtadv.2018.12.001. |
19 | WANG G X, YANG L, CHEN Y, et al. An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2005, 50(24): 4649-4654. |
20 | LUO X D, YIN Y Z, YUAN M, et al. High performance composites of spinel LiMn2O4/3DG for lithium ion batteries[J]. RSC Advances, 2018, 8(2): 877-884. |
21 | YOON Sukeun, JUNG Kyunam, YEON Sunhwa, et al. Electrochemical properties of LiNi0.8Co0.15Al0.05O2-graphene composite as cathode materials for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2012, 683: 88-93. |
22 | RAO C V, REDDY A L M, ISHIKAWA Y, et al. LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 2966-2972. |
23 | LIU Suqin, ZHANG Jianfeng, HUANG Kelong, et al. Improvement of electrochemical performance of LiMn2O4 composite cathode by ox-MWCNT addition for Li-ion battery[J]. Journal of the Brazilian Chemical Society, 2008, 19(6): 1078-1083. |
24 | LEVIN O, ELISEEVA S, ALEKSEEVA E V, et al. Composite LiFePO4/poly-3,4-ethylenedioxythiophene cathode for lithium-ion batteries with low content of non-electroactive components[J]. International Journal of Electrochemical Science, 2015, 10: 8175-8189. |
25 | HER Lijane, HONG Jinlong, CHANG Chiachin. Preparation and electrochemical characterizations of poly(3,4-dioxyethylenethiophene)/LiCoO2 composite cathode in lithium-ion battery[J]. Journal of Power Sources, 2006, 157(1): 457-463. |
26 | 苏畅, 黄启飞, 徐立环, 等. C-LiFePO4/聚三苯胺复合锂离子电池正极材料的制备与性能[J]. 物理化学学报, 2014, 30(1): 88-94. |
SU Chang, HUANG Qifei, XU Lihuan, et al. Preparation and performances on C-LiFePO4/polytriphenylamine composite as cathode material for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 88-94. | |
27 | ZHU Limin, XIE Lingling, BAO Chenguang, et al. LiNi1/3Co1/3Mn1/3O2/polypyrrole composites as cathode materials for high-performance lithium-ion batteries[J]. International Journal of Energy Research, 2020, 44(1): 298-308. |
28 | PUTHIRATH A B, JOHN B, GOURI C, et al. Lithium doped polyaniline and its composites with LiFePO4 and LiMn2O4-prospective cathode active materials for environment friendly and flexible Li-ion battery applications[J]. RSC Advances, 2015, 5(85): 69220-69228. |
29 | RYU Kwangsun, KIM Kwangman. A hybrid power source with a shared electrode of polyaniline doped with LiPF6[J]. Journal of Power Sources, 2007, 165(1): 420-426. |
30 | TRANQUI D, SHANNON R, CHEN H Y, et al. Crystal structure of ordered Li4SiO4[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1979, 35(11): 2479-2487. |
31 | ZHENG Junchao, YANG Zhuo, HE Zhenjiang, et al. In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries[J]. Nano Energy, 2018, 53: 613-621. |
32 | KIM Chisu, GUERFI A, HOVINGTON P, et al. Facile dry synthesis of sulfur-LiFePO4 core-shell composite for the scalable fabrication of lithium/sulfur batteries[J]. Electrochemistry Communications, 2013, 32: 35-38. |
33 | 朱蕾, 江小标, 贾荻, 等. LiFePO4/S复合正极材料的制备及其电化学性能[J]. 储能科学与技术, 2019, 8(6): 1116-1125. |
ZHU Lei, JIANG Xiaobiao, JIA Di, et al. Preparation and electrochemical performance of LiFePO4/S composite cathode materials[J]. Energy Storage Science Technology, 2019, 8(6): 1116-1125. | |
34 | CHEN Qichao, LUO Liming, WANG Long, et al. Enhanced electrochemical properties of Y2O3-coated-(lithium-manganese)-rich layered oxides as cathode materials for use in lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 735: 1778-1786. |
35 | JU Bowei, WANG Xianyou, WU Chun, et al. Electrochemical performance of the graphene/Y2O3/LiMn2O4 hybrid as cathode for lithium-ion battery[J]. Journal of Alloys and Compounds, 2014, 584: 454-460. |
36 | DENG Yufeng, ZHAO Shixi, XU Yahui, et al. Electrochemical performance of layer-spinel composite cathode materials at elevated temperature and high rate[J]. Applied Surface Science, 2015, 351: 209-215. |
37 | GE Tao, GUO Zhaoxin, WU Minfang, et al. Preparation and characterization of spinel-layered mixed structural 0.2LiNi0.5Mn1.5O4·0.8Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 801: 254-261. |
38 | NAYAK P K, LEVI E, GRINBLAT J, et al. High-capacity layered-spinel cathodes for Li-ion batteries[J]. ChemSusChem, 2016, 9(17): 2404-2413. |
39 | LIU Yunjian, ZHENG Shengquan, WANG Qiliang, et al. Improvement the electrochemical performance of Cr doped layered-spinel composite cathode material Li1.1Ni0.235Mn0.735Cr0.03O2.3 with Li4Ti5O12 coating[J]. Ceramics International, 2017, 43(12): 8800-8808. |
40 | KIM Hyunsoo, KIM Sunil, KIM Wooseong. A study on electrochemical characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode for Li secondary battery[J]. Electrochimica Acta, 2006, 52(4): 1457-1461. |
41 | CARELLI S, QUARTI M, YAGCI M C, et al. Modeling and experimental validation of a high-power lithium-ion pouch cell with LCO/NCA blend cathode[J]. Journal of the Electrochemical Society, 2019, 166(13): A2990-A3003. |
42 | POTIRON E, VERBAERE A, PIFFARD Y, et al. Electrochemically synthesized vanadium oxides as lithium insertion hosts[J]. Electrochimica Acta, 1999, 45(1): 197-214. |
43 | WEST K, ZACHAUCHRISTIANSEN B, JACOBSEN T, et al. Vanadium oxide xerogels as electrodes for lithium batteries[J]. Electrochimica Acta, 1993, 38(9): 1215-1220. |
44 | GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(1): 84-86. |
45 | LEE E S, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-VO2(B) composite cathodes with controlled irreversible capacity loss for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(1): doi: 10.1149/1.3515900. |
46 | GAO J, MANTHIRAM A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts[J]. Journal of Power Sources, 2009, 191(2): 644-647. |
47 | ZHU Zhenye, ZHUO Sang. Nano layered-spinel 0.8Li2MnO3·0.2LiMn2O4 as high-performance cathode for Li-ion batteries[J]. IOP Conference Series: Materials Science and Engineering, 2020, 733: doi: 10.1088/1757-899X/733/1/012005 |
48 | LEE E S, HUQ A, MANTHIRAM A. Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 193-203. |
49 | LEE E S, HUQ A, CHANG H Y, et al. High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries[J]. Chemistry of Materials, 2012, 24(3): 600-612. |
50 | KATAOKA R, KOJIMA T, TAKEICHI N. Electrochemical property of Li-Mn cation disordered Li-rich Li2MnO3 with nacl type structure[J]. Journal of the Electrochemical Society, 2018, 165(2): doi: 10.1149/2.1041802jes. |
51 | HU Sijiang, PILLAI A S, LIANG Gemeng et al. Li-rich layered oxides and their practical challenges: Recent progress and perspectives[J]. Electrochemical Energy Reviews, 2019: 1-35. |
52 | YAN Pengfei, XIAO Liang, ZHENG Jianming, et al. Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries[J]. Chemistry of Materials, 2015, 27(3): 975-982. |
53 | TIAN Mijie, ZHOU Lin, WU Huali, et al. Phase structure and electrochemical performance of layered-spinel integrated LiNi0.5Mn0.5O2-LiMn1.9Al0.1O4 composite cathodes for lithium ion batteries[J]. Ceramics International, 2016, 42(15): 16916-16926. |
54 | 朱蕾, 贾荻, 俞超, 等. 锂离子电池LiFePO4/LiNi0.8Co0.15Al0.05O2混合正极材料的电化学热稳定性能[J]. 储能科学与技术, 2016, 5(4): 478-485. |
ZHU Lei, JIA Di, YU Chao, et al. Electrochemical thermal stability of the LiFePO4/LiNi0.8Co0.15Al0.05O2 blend cathode material for lithium ion batteries[J]. Energy Storage Science Technology, 2016, 5(4): 478-485. | |
55 | ZHU Lei, YAN Tingfang, JIA Di, et al. LiFePO4-coated LiNi0.5Co0.2Mn0.3O2 cathode materials with improved high voltage electrochemical performance and enhanced safety for lithium ion pouch cells[J]. Journal of the Electrochemical Society, 2019, 166(3): doi: https://doi.org/10.1149/2.0651903jes. |
56 | LIU Lina, YAN Xiao, WANG Yuhui, et al. Studies of the electrochemical properties and thermal stability of LiNi1/3Co1/3Mn1/3O2/LiFePO4 composite cathodes for lithium ion batteries[J]. Ionics, 2014, 20(8): 1087-1093. |
57 | KIM Hyunju, JIN Bongsoo, DOH Chilhoon, et al. Electrochemical properties and thermal stability of LiNi0.8Co0.15Al0.05O2-LiFePO4 mixed cathode materials for lithium secondary[J]. Journal of Electrochemical Science and Technology, 2012, 3(2): 63-67. |
58 | CHEN Junchao, ZHU Lei, JIA Di, et al. LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating[J]. Electrochimica Acta, 2019, 312: 179-187. |
59 | ALLAHYARI E, GHORBANZADEH M, RIAHIFAR R, et al. Electrochemical performance of NCM/LFP/Al composite cathode materials for lithium-ion batteries[J]. Materials Research Express, 2018, 5(5): doi: 10.1088/2053-1591/aacoc7. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[3] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[7] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[10] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[11] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[12] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[13] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[14] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[15] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||