Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 7-26.doi: 10.19799/j.cnki.2095-4239.2020.0212
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yue MU1(), Yun DU2, Hai MING1, Songtong ZHANG1, Jingyi QIU1()
Received:
2020-06-14
Revised:
2020-07-19
Online:
2021-01-05
Published:
2021-01-08
Contact:
Jingyi QIU
E-mail:muyuedeed@hotmail.com;qiujingyi1202@163.com
CLC Number:
Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 7-26.
1 | YAN Pengfei, ZHENG Jianming, GU Meng, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nature Communications, 2017, 8(1): doi: 10.1038/ncomms14101. |
2 | PANG W K, LIN H, PETERSON V K, et al. Effects of fluorine and chromium doping on the performance of lithium-rich Li1+xMO2 (M=Ni, Mn, Co) positive electrodes[J]. Chemistry of Materials, 2017, 29(24): 10299-10311. |
3 | ZENG Y, CHIU H, RASOOL M, et al. Hydrothermal crystallization of Pmn21 Li2FeSiO4 hollow mesocrystals for Li-ion cathode application[J]. Chemical Engineering Journal, 2019, 359: 1592-1602. |
4 | LIU Xingrui, WANG Dong, WAN Lijun. Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy[J]. Science Bulletin, 2015, 60(9): 839-849. |
5 | CHEN C Y, SANO T, TSUDA T, et al. In situ scanning electron microscopy of silicon anode reactions in lithium-ion batteries during charge/discharge processes[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep36153. |
6 | WANG X F, LI Y J, MENG Y S. Cryogenic electron microscopy for characterizing and diagnosing batteries[J]. Joule, 2018, 2(11): 2225-2234. |
7 | UNOCIC R R, SACCI R L, BROWN G M, et al. Quantitative electrochemical measurements using in situ ec-S/TEM devices[J]. Microscopy and Microanalysis, 2014, 20(2): 452-461. |
8 | WANG Z Y, SANTHANAGOPALAN D, ZHANG W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3767. |
9 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. |
10 | ZACHMAN M J, TU Z, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. |
11 | BORKIEWICZ O J, SHYAM B, WIADEREK K M, et al. The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements[J]. Journal of Applied Crystallography, 2012, 45(6): 1261-1269. |
12 | LYU Yingchun, LIU Yali, CHENG Tao, et al. High-throughput characterization methods for lithium batteries[J]. Journal of Materiomics, 2017, 3(3): 221-229. |
13 | LIU Hao, ALLAN P K, BORKIEWICZ O J, et al. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices[J]. Journal of Applied Crystallography, 2016, 49(5): 1665-1673. |
14 | LIU D X, WANG J H, PAN K, et al. In situ quantification and visualization of lithium transport with neutrons[J]. Angew Chem Int Ed Engl, 2014, 53(36): 9498-9502. |
15 | BOULET-ROBLIN L, SHEPTYAKOV D, BOREL P, et al. Crystal structure evolution viaoperando neutron diffraction during long-term cycling of a customized 5 V full Li-ion cylindrical cell LiNi0.5Mn1.5O4vs. graphite[J]. Journal of Materials Chemistry A, 2017, 5(48): 25574-25582. |
16 | FINEGAN D P, VAMVAKEROS A, TAN Chun, et al. Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-14467-x. |
17 | TU Wenqiang, XIA Pan, ZHENG Xiongwen, et al. Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte[J]. Journal of Power Sources, 2017, 341: 348-356. |
18 | KEY B, BHATTACHARYYA R, MORCRETTE M, et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chemical Society, 2009, 131(26): 9239-9249. |
19 | SHPIGEL N, LEVI M D, SIGALOV S, et al. In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes[J]. Nature Materials, 2016, 15(5): 570-575. |
20 | BRANT W R, LI D, GU Q F, et al. Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials[J]. Journal of Power Sources, 2016, 302: 126-134. |
21 | GANAPATHY S, ADAMS B D, STENOU G, et al. Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction[J]. Journal of the American Chemical Society, 2014, 136(46): 16335-16344. |
22 | BORKIEWICZ O J, WIADEREK K M, CHUPAS P J, et al. Best practices for operando battery experiments: Influences of X-ray experiment design on observed electrochemical reactivity[J]. The Journal of Physical Chemistry Letters, 2015, 6(11): 2081-2085. |
23 | GU M, PARENT L R, MEHDI B L, et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes[J]. Nano Letters, 2013, 13(12): 6106-6112. |
24 | HOLTZ M E, YU Y, GUNCELER D, et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte[J]. Nano Letters, 2014, 14(3): 1453-1459. |
25 | CHEN D C, MAHMOUD M A, WANG J, et al. Operando investigation into dynamic evolution of cathode-electrolyte interfaces in a Li-ion battery[J]. Nano Letters, 2019, 19(3): 2037-2043. |
26 | MA Kaijie, ZHANG Yunong, LIU Le, et al. In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-13147-9. |
27 | LIN Ruoqian, HU Enyuan, LIU Mingjie, et al. Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-09248-0. |
28 | ZHANG Jienan, LI Qinghao, OUYANG Chuying, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V[J]. Nature Energy, 2019, 4(7): 594-603. |
29 | XIE Song, REN Lixiang, YANG Xiaoyong, et al. Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227425. |
30 | DING D, MAEYOSHI Y, KUBOTA M, et al. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227553. |
31 | WANG D, BUQA H, CROUZET M, et al. High-performance, nano-structured LiMnPO4 synthesized via a polyol method[J]. Journal of Power Sources, 2009, 189(1): 624-628. |
32 | ZHENG Jianming, XU Pinghong, GU Meng, et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material[J]. Chemistry of Materials, 2015, 27(4): 1381-1390. |
33 | QING Renpeng, SHI Jile, XIAO Dongdong, et al. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping[J]. Advanced Energy Materials, 2016, 6(6): doi: 10.1002/aenm.201501914. |
34 | COHEN Y S, AURBACH D. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: In situ AFM imaging[J]. Electrochemistry Communications, 2004, 6(6): 536-542. |
35 | ALVARADO J, SCHROEDER M A, ZHANG Minghao, et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4): 341-353. |
36 | LI Xinlu, KANG Feiyu, BAI Xinde, et al. A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries[J]. Electrochemistry Communications, 2007, 9(4): 663-666. |
37 | DOHERTY C M, CARUSO R A, SMARSLY B M, et al. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries[J]. Chemistry of Materials, 2009, 21(21): 5300-5306. |
38 | HUA Weibo, WU Zhenguo, CHEN Mingzhe, et al. Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors[J]. Journal of Materials Chemistry A, 2017, 5(48): 25391-25400. |
39 | ZHENG Hao, XIAO Dongdong, LI Xing, et al. New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Letters, 2014, 14(8): 4245-4249. |
40 | PENNYCOOK S J, BOATNER L A. Chemically sensitive structure-imaging with a scanning transmission electron microscope[J]. Nature, 1988, 336(6199): 565-567. |
41 | OKUNISHI E, ISHIKAWA I, SAWADA H, et al. Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy[J]. Microscopy and Microanalysis, 2009, 15(S2): 164-165. |
42 | HU Enyuan, YU Xiqian, LIN Ruoqian, et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release[J]. Nature Energy, 2018, 3(8): 690-698. |
43 | XU Ming, FEI Linfeng, ZHANG Weibing, et al. Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries[J]. Nano Letters, 2017, 17(3): 1670-1677. |
44 | INABA M, TOMIYASU H, TASAKA A, et al. Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures[J]. Langmuir, 2004, 20(4): 1348-1355. |
45 | JAISER S, KUMBERG J, KLAVER J, et al. Microstructure formation of lithium-ion battery electrodes during drying—An ex-situ study using cryogenic broad ion beam slope-cutting and scanning electron microscopy (Cryo-BIB-SEM)[J]. Journal of Power Sources, 2017, 345: 97-107. |
46 | WANG Xuefeng, ZHANG Minghao, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12): 7606-7612. |
47 | LI Y Z, HUANG W, LI Y B, et al. Correlating Structure and function of battery interphases at atomic resolution using cryoelectron microscopy[J]. Joule, 2018, 2(10): 2167-2177. |
48 | SCHIPPER F, DIXIT M, KOVACHEVA D, et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: Zirconium-doped LiNi0.6Co0.2Mn0.2O2[J]. Journal of Materials Chemistry A, 2016, 4(41): 16073-16084. |
49 | RYU H H, PARK K J, YOON C S, et al. Capacity fading of Ni-rich Li [NixCoyMn1–x–y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?[J]. Chemistry of Materials, 2018, 30(3): 1155-1163. |
50 | GOONETILLEKE D, SHARMA N, PANG W K, et al. Structural evolution and high-voltage structural stability of Li(NixMnyCoz)O2 electrodes[J]. Chemistry of Materials, 2018, 31(2): 376-386. |
51 | MOHANTY D, DAHLBERG K, KING D M, et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: Preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Scientific Reports, 2016, 6(1): doi: 10.1038/srep26532. |
52 | KLEINER K, STREHLE B, BAKER A R, et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides: A long-duration in situ synchrotron powder diffraction study[J]. Chemistry of Materials, 2018, 30(11): 3656-3667. |
53 | SHI Jilei, ZHANG Jienan, HE Min, et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20138-20146. |
54 | KONDRAKOV A O, SCHMIDT A, XU Jin, et al. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(6): 3286-3294. |
55 | BOBRIKOV I A, SAMOYLOVA N Y, SUMNIKOV S V, et al. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode[J]. Journal of Power Sources, 2017, 372: 74-81. |
56 | TAN C, DAEMI S R, TAIWO O O, et al. Evolution of electrochemical cell designs for in-situ and operando 3D characterization[J]. Materials (Basel), 2018, 11(11): doi: 10.3390/ma11112157. |
57 | DEDRYVÈRE R, FOIX D, FRANGER S, et al. Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery[J]. Journal of Physical Chemistry C, 2010, 114(24): 10999-11008. |
58 | CHEN Shi, HE Tao, SU Yuefeng, et al. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29732-29743. |
59 | LIN F, XIN H L, NORDLUND D, et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nature Energy, 2016, 1(1): doi: 10.1038/nenergy.2015.4. |
60 | ULU OKUDUR F, D'HAEN J, VRANKEN T, et al. Ti surface doping of LiNi0.5Mn1.5O4-δ positive electrodes for lithium ion batteries[J]. RSC Advances, 2018, 8(13): 7287-7300. |
61 | WANDT J, FREIBERG A, THOMAS R, et al. Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy[J]. Journal of Materials Chemistry A, 2016, 4(47): 18300-18305. |
62 | LEE J, KITCHAEV D A, KWON D H, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018, 556(7700): 185-190. |
63 | KIM J, KANG H GO N, et al. Egg-shell structured LiCoO2 by Cu2+ substitution to Li+ sites via facile stirring in an aqueous copper(ii) nitrate solution[J]. Journal of Materials Chemistry A, 2017, 5(47): 24892-24900. |
64 | DHAYBI S, MARSAN B, HAMMAMI A. A novel low-cost and simple colloidal route for preparing high-performance carbon-coated LiFePO4 for lithium batteries[J]. Journal of Energy Storage, 2018, 18: 259-265. |
65 | SHAJU K M, SUBBA R G, CHOWDARI B V. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries[J]. Electrochimica Acta, 2002, 48(2): 145-151. |
66 | DAHÉRON L, DEDRYVÈRE R, MARTINEZ H, et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS[J]. Chemistry of Materials, 2008, 20(2): 583-590. |
67 | LIU Yunjia, FAN Xiaojian, ZHANG Zhiqian, et al. Enhanced electrochemical performance of Li-rich layered cathode materials by combined Cr doping and LiAlO2 coating[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2225-2235. |
68 | WANG Gang, WEN Weicheng, CHEN Shuhua, et al. Improving the electrochemical performances of spherical LiNi0.5Mn1.5O4 by Fe2O3 surface coating for lithium-ion batteries[J]. Electrochimica Acta, 2016, 212: 791-799. |
69 | NAYAK P K, GRINBLAT J, LEVI M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201502398. |
70 | DOGAN F, VAUGHEY J T, IDDIR H, et al. Direct observation of lattice aluminum environments in Li ion cathodes LiNi1-y-zCoyAlzO2 and Al-doped LiNixMnyCozO2via27Al MAS NMR spectroscopy[J]. ACS Applied Materials & Interfaces, 2016, 8(26): 16708-16717. |
71 | YIM T, JANG S H, HAN Y K. Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material[J]. Journal of Power Sources, 2017, 372: 24-30. |
72 | CHANDRASHEKAR S, TREASE N M, CHANG H J, et al. 7Li MRI of Li batteries reveals location of microstructural lithium[J]. Nature Materials, 2012, 11(4): 311-315. |
73 | PECHER O, BAYLEY P M, LIU Hao, et al. Automatic tuning matching cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries[J]. Journal of Magnetic Resonance, 2016, 265: 200-209. |
74 | TSAI P C, WEN B H, WOLFMAN M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy & Environmental Science, 2018, 11(4): 860-871. |
75 | MU Linqin, LIN Ruoqian, XU Rong, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Letters, 2018, 18(5): 3241-3249. |
76 | YANG Z Z, INGRAM B J, TRAHEY L. Interfacial studies of Li-ion battery cathodes using in situ electrochemical quartz microbalance with dissipation[J]. Journal of the Electrochemical Society, 2014, 161(6): A1127-A1131. |
77 | ZHENG J M, ZHANG Z R, WU X B, et al. The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery[J]. Journal of the Electrochemical Society, 2008, 155(10): doi: 10.1149/1.2966694. |
78 | GENT W E, LIM K, LIANG Y F, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8(1): doi: 10. 15541/jim20200012. |
79 | LU C Y, ROONEY D W, JIANG X, et al. Achieving high specific capacity of lithium-ion battery cathodes by modification with "N–O˙" radicals and oxygen-containing functional groups[J]. Journal of Materials Chemistry A, 2017, 5(47): 24636-24644. |
80 | 陈龙, 张二冬, IQBAL A, 等. 三元前驱体微观形貌结构对LiNi0.85Co0.10Mn0.05O2正极材料性能的影响[J]. 储能科学与技术, 2020, 9(2): 409-414. |
CHEN Long, ZHANG Erdong, IQBAL A, et al. Effect of precursor microstructure on the performance of LiNi0.85Co0.10Mn0.05O2 cathode materials[J]. Energy Storage Science and Technology, 2020, 9(2): 409-414. | |
81 | 袁琦, 邹正光, 万振东, 等. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113. |
YUAN Qi, ZOU Zhengguang, WAN Zhendong, et al. Synthesis and electrochemical properties of Fe-doped V6O13 as cathode material for Li-ion battery[J]. Journal of Materials Engineering, 2018, 46(1): 106-113. | |
82 | 郝小罡, 刘子庚, 龚正良, 等. 锂离子电池正极材料Na3V2(PO4)2F3的原位XRD及固体核磁共振研究[J]. 中国科学: 化学, 2012. 42(1): 38-46. |
HAO Xiaogang, LIU Zigeng, GONG Zhengliang,et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica, 2012, 42(1): 38-46. | |
83 | 马天翼, 王芳, 徐大鹏, 等. 动力电池轻度电滥用积累造成的性能和安全性劣化研究[J]. 储能科学与技术, 2020, 9(2): 400-408. |
MA Tianyi, WANG Fang, XU Dapeng. Investigation of the performance and safety degradation caused by slight accumulation of electricity in traction batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 400-408. | |
84 | 刘勇, 白海军, 赵奇志, 等. LiNi0.8Co0.15Al0.05O2/石墨锂离子电池高荷电存储老化机理研究[J]. 无机材料学报, 2020, doi: 10. 15541/jim20200012. |
XIE K, ZHENG C, LI Y, et al. Storage ageing mechanism of LiNi0. 8Co0. 15Al0. 05O2/graphite Li-ion batteries at high state of charge [J]. Journal of Inorganic Materials, 2020, doi: 10. 15541/jim20200012. | |
85 | 孔令丽, 张克军, 蔡嘉兴, 等. 高电压锂离子电池间歇式循环失效分析及改善[J]. 储能科学与技术, 2020, 9(3): 964-968. |
KONG Lingli, ZHANG Kejun, CAI Jiaxing, et al. Analysis and improvement of interval cycle life for high voltage lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 964-968. | |
86 | 苏岳锋, 张其雨, 陈来, 等. ZrO2包覆高镍LiNi0.8Co0.1Mn0.1O2正极材料提高其循环稳定性的作用机理[J]. 物理化学学报, 2020, doi: 10. 3866/PKU. WHXB202005062. |
SU Yuefeng, ZHANG Qiyu, CHEN Lai, et al. Effects of ZrO2 coating on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities[J]. Acta Physico-Chimica Sinica, 2020, doi: 10. 3866/PKU. WHXB202005062. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | XIE Chenglu, HUANG Xiankun, KANG Lixia, LIU Yongzhong. Electrocatalytic performances of Ru nanoparticles supported on carbon nanotubes by colloidal solution for synthetic ammonia [J]. Energy Storage Science and Technology, 2022, 11(6): 1947-1956. |
[7] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[8] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[9] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[10] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[11] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[12] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[13] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[14] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[15] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||