Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 1008-1018.doi: 10.19799/j.cnki.2095-4239.2021.0629
Previous Articles Next Articles
					
													Dongge QIAO( ), Xunliang LIU(
), Xunliang LIU( ), Zhi WEN, Ruifeng DOU, Wenning ZHOU
), Zhi WEN, Ruifeng DOU, Wenning ZHOU
												  
						
						
						
					
				
Received:2021-11-25
															
							
																	Revised:2021-12-09
															
							
															
							
																	Online:2022-03-05
															
							
																	Published:2022-03-11
															
						Contact:
								Xunliang LIU   
																	E-mail:3295752761@qq.com;liuxl@me.ustb.edu.cn
																					CLC Number:
Dongge QIAO, Xunliang LIU, Zhi WEN, Ruifeng DOU, Wenning ZHOU. Numerical analysis of inhibition of lithium dendrite growth by heating and pulse charging[J]. Energy Storage Science and Technology, 2022, 11(3): 1008-1018.
 
													
													Table 1
Model parameter values"
| 参数 | 数值 | 参考文献 | 
|---|---|---|
| 界面迁移率Lσ | 2.5×10-6 m3/(J·s) | [ | 
| 反应常数Lη | 1.0 s-1 | [ | 
| 势垒高度Wξ | 3.75×105 J·m3 | [ | 
| 梯度能系数κ | 5×10-5 J/m | [ | 
| 电极中Li+扩散系数Ds | 7.5×10-13 m2/s | [ | 
| 电解液中Li+扩散系数Dl | 7.5×10-10 m2/s | [ | 
| 电极电导率σs | 1.0×107 S/m | [ | 
| 电解液电导率σl | 1.0 S/m | [ | 
| 电极比热容cps | 3600 J/(kg·K) | — | 
| 电解液比热容cpl | 1200 J/(kg·K) | [ | 
| 电极质量密度ρs | 590 kg/m3 | — | 
| 电解液质量密度ρl | 1290 kg/m3 | [ | 
| 电极热导率λs | 84.8 W/(m·K) | — | 
| 电解液热导率λl | 0.45 W/(m·K) | [ | 
| 对称因子α | 0.5 | [ | 
| 各向异性强度δ | 0.05 | [ | 
| 各向异性模数ω | 4 | [ | 
| 锂体积浓度c0 | 1×103 mol/m3 | [ | 
| 锂物质的量浓度cs | 7.64×104 mol/m3 | [ | 
| 活化能Ed | 3.3×104 J/mol | [ | 
 
													
													Fig. 5
Dendritic morphology formed under constant current (a), tOFF/tON=0.5 and tON=5 ms (b), tOFF/tON=1 and tON=5 ms (c), tOFF/tON=1 and tON=5 ms (d) pulse charging frequencies, respectively. (The initial condition of the first row is multiple points, and the initial condition of the second row is uniform plane)"
 
														 
													
													Fig. 6
(a) morphology of lithium dendrite formed under different conditions and its corresponding concentration field, 293 K, constant current (column 1); 323 K, constant current (column 2); 293 K, tOFF/tON=2 and tON=5 ms pulse current (column 3), (b) average dendrite growth rate under different diffusivity and overpotential values, (c) relationship between average dendrite growth rate and Da number[(c1), (c2), (c3) show the dendritic morphology under different Da values]"
 
														| 1 | CHEN S R, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140-3151. | 
| 2 | KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chemical Reviews, 2020, 120(15): 7745-7794. | 
| 3 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. | 
| 4 | YASIN G, ARIF M, MEHTAB T, et al. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries[J]. Energy Storage Materials, 2020, 25: 644-678. | 
| 5 | ZHANG Y H, QIAN J F, XU W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12): 6889-6896. | 
| 6 | LIU Y F, WANG H R, LI J Y, et al. Mixed lithium fluoride-nitride ionic conducting interphase for dendrite-free lithium metal anode[J]. Applied Surface Science, 2021, 541: doi: 10.1016/j.apsusc.2020.148294. | 
| 7 | LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858. | 
| 8 | LIANG Z, LIN D C, ZHAO J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2862-2867. | 
| 9 | CHOI B N, SEO J Y, KIM B, et al. Electro-deposition of the lithium metal anode on dendritic copper current collectors for lithium battery application[J]. Applied Surface Science, 2020, 506: doi: 10.1016/j.apsusc.2019.144884. | 
| 10 | YANG H, FEY E O, TRIMM B D, et al. Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency[J]. Journal of Power Sources, 2014, 272: 900-908. | 
| 11 | ARYANFAR A, BROOKS D, MERINOV B V, et al. Dynamics of lithium dendrite growth and inhibition: Pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726. | 
| 12 | MAYERS M Z, KAMINSKI J W, MILLER T F III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26214-26221. | 
| 13 | VISHNUGOPI B S, HAO F, VERMA A, et al. Double-edged effect of temperature on lithium dendrites[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23931-23938. | 
| 14 | HWANG J K, OKADA H, HARAGUCHI R, et al. Ionic liquid electrolyte for room to intermediate temperature operating Li metal batteries: Dendrite suppression and improved performance[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour. 2020.227911. | 
| 15 | LOVE C T, BATURINA O A, SWIDER-LYONS K E. Observation of lithium dendrites at ambient temperature and below[J]. ECS Electrochemistry Letters, 2015, 4(2): A24-A27. | 
| 16 | QIU G R, LU L, LU Y, et al. Effects of pulse charging by triboelectric nanogenerators on the performance of solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28345-28350. | 
| 17 | LI Q, TAN S, LI L L, et al. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries[J]. Science Advances, 2017, 3(7): doi: 10.1126/sciadv.1701246. | 
| 18 | YONEMOTO F, NISHIMURA A, MOTOYAMA M, et al. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12[J]. Journal of Power Sources, 2017, 343: 207-215. | 
| 19 | ZHU R D, FENG J M, GUO Z S. In situ observation of dendrite behavior of electrode in half and full cells[J]. Journal of the Electrochemical Society, 2019, 166(6): A1107-A1113. | 
| 20 | TANG C Y, DILLON S J. In situ scanning electron microscopy characterization of the mechanism for Li dendrite growth[J]. Journal of the Electrochemical Society, 2016, 163(8): A1660-A1665. | 
| 21 | RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245. | 
| 22 | AKOLKAR R. Mathematical model of the dendritic growth during lithium electrodeposition[J]. Journal of Power Sources, 2013, 232: 23-28. | 
| 23 | MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396-A404. | 
| 24 | OKAJIMA Y, SHIBUTA Y, SUZUKI T. A phase-field model for electrode reactions with Butler-Volmer kinetics[J]. Computational Materials Science, 2010, 50(1): 118-124. | 
| 25 | WANG K L, XIAO Y, PEI P C, et al. A phase-field model of dendrite growth of electrodeposited zinc[J]. Journal of the Electrochemical Society, 2019, 166(10): D389-D394. | 
| 26 | CHENG F, HU Y, ZHAO L X. Analysis of weak solutions for the phase-field model for lithium-ion batteries[J]. Applied Mathematical Modelling, 2020, 78: 185-199. | 
| 27 | REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12195-12204. | 
| 28 | CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. | 
| 29 | YAN H H, BIE Y H, CUI X Y, et al. A computational investigation of thermal effect on lithium dendrite growth[J]. Energy Conversion and Management, 2018, 161: 193-204. | 
| 30 | MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26: 100921. | 
| 31 | HONG Z J, VISWANATHAN V. Prospect of thermal shock induced healing of lithium dendrite[J]. ACS Energy Letters, 2019, 4(5): 1012-1019. | 
| 32 | HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters, 2010, 485(4/5/6): 265-274. | 
| 33 | YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619. | 
| 34 | MARASCHKY A, AKOLKAR R. Temperature dependence of dendritic lithium electrodeposition: A mechanistic study of the role of transport limitations within the SEI[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab7ce2. | 
| 35 | GAO L T, GUO Z S. Phase-field simulation of Li dendrites with multiple parameters influence[J]. Computational Materials Science, 2020, 183: doi: 10.1016/j.commatsci.2020.109919. | 
| 36 | XU S S, CHEN K H, DASGUPTA N P, et al. Evolution of dead lithium growth in lithium metal batteries: Experimentally validated model of the apparent capacity loss[J]. Journal of the Electrochemical Society, 2019, 166(14): A3456-A3463. | 
| 37 | KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. | 
| 38 | HSIEH Y C, LEIßING M, NOWAK S, et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy[J]. Cell Reports Physical Science, 2020, 1(8): doi: 10.1016/j.xcrp. 2020.100139. | 
| [1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. | 
| [2] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. | 
| [3] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. | 
| [4] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. | 
| [5] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. | 
| [6] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. | 
| [7] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. | 
| [8] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. | 
| [9] | Dengfeng JIANG, Yajun CHEN, Yaolong HE, Da BIAN, Hongjiu HU. Role of drying on the mechanical behavior of composite anodes [J]. Energy Storage Science and Technology, 2022, 11(3): 957-963. | 
| [10] | Xiaoge LOU, Xin WANG, Pengfei SI, Xiangyang RONG. Energy and energy analysis of two-stage water tanks variable-volume thermal heat storage system for solar heating [J]. Energy Storage Science and Technology, 2022, 11(2): 538-546. | 
| [11] | Bing CHEN, Lili ZHENG, Xichao LI, Yan FENG, Zhuo XU, Zuoqiang DAI. Discharge performance and charge-discharge heat generation characteristics of aging batteries [J]. Energy Storage Science and Technology, 2022, 11(2): 679-689. | 
| [12] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. | 
| [13] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. | 
| [14] | Xiaobin XU, Yefei XU, Hengyun ZHANG, Shunliang ZHU, Haifeng WANG. Multiobjective optimization of thermal performance and grouping efficiency for air cooling battery module [J]. Energy Storage Science and Technology, 2022, 11(2): 553-562. | 
| [15] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
