1 |
吴克麟. 基于空调系统的交变式电池热管理系统性能研究[D]. 北京: 北京理工大学, 2016.
|
|
WU K L. The performance research of alternating type battery thermal management system based on automotive air conditioning[D]. Beijing: Beijing Institute of Technology, 2016.
|
2 |
赵国柱, 招晓荷, 徐晓明, 等. 基于最小能耗的动力电池风冷控制策略[J]. 储能科学与技术, 2019, 8(4): 751-758.
|
|
ZHAO G Z, ZHAO X H, XU X M, et al. Air cooling strategy of power battery based on minimum energy consumption[J]. Energy Storage Science and Technology, 2019, 8(4): 751-758.
|
3 |
罗宗鸿. 电动汽车电池热特性及电池组风冷散热研究[D]. 南昌: 南昌航空大学, 2018.
|
|
LUO Z H. Research on battery thermal characteristics and air cooling heat dissipation of battery packs for electric vehicles[D]. Nanchang: Nanchang Hangkong University, 2018.
|
4 |
刘彬, 胡子强, 李夔宁, 等. 基于大平板热管的电池热管理实验及仿真[J]. 储能科学与技术, 2021, 10(4): 1364-1373.
|
|
LIU B, HU Z Q, LI K N, et al. Experimental and simulation on battery thermal management based on a large flat heat pipe[J]. Energy Storage Science and Technology, 2021, 10(4): 1364-1373.
|
5 |
王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217.
|
|
WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217.
|
6 |
张晓光, 潘晓楠, 李金铭, 等. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135.
|
|
ZHANG X G, PAN X N, LI J M, et al. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs[J]. Energy Storage Science and Technology, 2022, 11(1): 127-135.
|
7 |
周毅鹏. 纯电动客车动力电池热管理系统设计[J]. 客车技术与研究, 2021, 43(1): 16-18.
|
|
ZHOU Y P. Design on thermal management system of power battery for pure electric buses[J]. Bus & Coach Technology and Research, 2021, 43(1): 16-18.
|
8 |
梁学楷, 汪浩, 翟华, 等. 碳纤维复合材料电池箱循环风散热分析[J]. 锻压装备与制造技术, 2021, 56(2): 90-95.
|
|
LIANG X K, WANG H, ZHAI H, et al. Analysis of circulating air heat dissipation of carbon fiber composite battery box[J]. China Metalforming Equipment & Manufacturing Technology, 2021, 56(2): 90-95.
|
9 |
刘永彬. 运行环境对变频空调器转速及能耗影响的理论与试验研究[D]. 北京: 北京工业大学, 2012.
|
|
LIU Y B. Theoreticaland experimental research of the operating environment on the rotational speed and energy consumption of the inverter air-conditioner[D]. Beijing: Beijing University of Technology, 2012.
|
10 |
金听祥, 徐笑锋, 吴彦生, 等. 室外环境温度对房间空调器性能影响的试验研究[J]. 低温与超导, 2015, 43(9): 66-69.
|
|
JIN T X, XU X F, WU Y S, et al. Experimental investigation on the influence of the outdoor temperature on the performance of air conditioner[J]. Cryogenics & Superconductivity, 2015, 43(9): 66-69.
|
11 |
林必超, 岑继文, 蒋方明. 汽车空调制冷剂直冷动力电池热管理系统的PID控制研究[J]. 新能源进展, 2020, 8(2): 123-130.
|
|
LIN B C, CEN J W, JIANG F M. A study on PID control for thermal management system of battery cooling by automotive air conditioning refrigerant directly[J]. Advances in New and Renewable Energy, 2020, 8(2): 123-130.
|
12 |
张宝斌, 刘佳鑫, 李建功, 等. 燃料电池冷却方法及热管理控制策略进展[J]. 电池, 2019, 49(2): 158-162.
|
|
ZHANG B B, LIU J X, LI J G, et al. Development of fuel cell cooling method and thermal management control strategy[J]. Battery Bimonthly, 2019, 49(2): 158-162.
|
13 |
张天时, 高青, 王国华, 等. 热泵辅助冷却电池热管理设计及其作用分析[J]. 太阳能学报, 2018, 39(3): 713-721.
|
|
ZHANG T S, GAO Q, WANG G H, et al. Numerical model and computational analysis on battery thermal management system with heat pump auxiliary cooling[J]. Acta Energiae Solaris Sinica, 2018, 39(3): 713-721.
|
14 |
苑盟. 直冷式电池成组热管理及其实验[D]. 长春: 吉林大学, 2019.
|
|
YUAN M. Thermal management and experiment on refrigerant-based direct cooling for battery module[D]. Changchun: Jilin University, 2019.
|