Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3064-3074.doi: 10.19799/j.cnki.2095-4239.2023.0409
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yansen ZHENG(), Yongyin WANG(), Jiuqing GUI, Zhuohao XIE, Yue XU, Qiaoying CAO(), Yuehua XU(), Yingliang LIU, Yeru LIANG()
Received:
2023-06-12
Revised:
2023-06-29
Online:
2023-10-05
Published:
2023-10-09
Contact:
Qiaoying CAO, Yuehua XU, Yeru LIANG
E-mail:614690652@qq.com;yongyin0909@163.com;caoqy@scau.edu.cn;xuyuehua@scau.edu.cn;liangyr@scau.edu.cn
CLC Number:
Yansen ZHENG, Yongyin WANG, Jiuqing GUI, Zhuohao XIE, Yue XU, Qiaoying CAO, Yuehua XU, Yingliang LIU, Yeru LIANG. Preparation and performances of gelatin/polyethylene oxide composite electrolyte for high-voltage solid-state lithium batteries[J]. Energy Storage Science and Technology, 2023, 12(10): 3064-3074.
Fig. 1
(a) Schematic diagram of the preparation process of G/PEO electrolyte; (b) SEM and EDS elemental images of G/PEO electrolyte; (c) Optical digital photos show the flexibility of G/PEO; (d) XRD patterns of PEO, PEO electrolyte, and G/PEO electrolyte; (e) FTIR spectrum of PEO and G/PEO electrolyte"
Fig. 4
(a) High voltage floating test of G/PEO and PEO at 3.8—4.4 V; (b) The EIS changes of SS|G/PEO|Li and (c) SS|PEO|Li batteries at different times under 4.6 V bias at 60 ℃; (d) FTIR spectra of PEO and G/PEO; (e) ESP surface electrostatic potentials of PEO, glycine, proline, hydroxyproline, and alanine (red and blue regions represent negative and positive charges, respectively)"
1 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
2 | WU T L, WANG Y Y, ZHANG W C, et al. Unveiling the role of lithiophilic sites denseness in regulating lithium ion deposition[J]. Journal of Energy Chemistry, 2022, 71: 324-332. |
3 | ZHENG J M, ENGELHARD M H, MEI D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017, 2: 17012. |
4 | LIANG S T, YU Z J, MA T S, et al. Mechanistic insights into the structural modulation of transition metal selenides to boost potassium ion storage stability[J]. ACS Nano, 2021, 15(9): 14697-14708. |
5 | WANG X F, FU C K, FENG Z J, et al. Flyash/polymer composite electrolyte with internal binding interaction enables highly-stable extrinsic-interfaces of all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2022, 428: 131041. |
6 | AN H W, LIU Q S, AN J L, et al. Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries[J]. Energy Storage Materials, 2021, 43: 358-364. |
7 | ZHOU Q, MA J, DONG S M, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): e1902029. |
8 | ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. |
9 | GERLACH P, BALDUCCI A. The influence of current density, rest time and electrolyte composition on the self-discharge of organic radical polymers[J]. Electrochimica Acta, 2021, 377: 138070. |
10 | WU T L, ZHANG W C, CAI J W, et al. Deciphering the dual functions of a silicon dioxide protective layer in regulating lithium-ion deposition[J]. Materials Advances, 2022, 3(12): 4797-4801. |
11 | LIANG J N, HWANG S, LI S, et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries[J]. Nano Energy, 2020, 78: 105107. |
12 | LIANG J N, SUN Y P, ZHAO Y, et al. Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries[J]. Journal of Materials Chemistry A, 2020, 8(5): 2769-2776. |
13 | 张林森, 王士奇, 王利霞, 等. PEO基Li+-g-C3N4复合固态电解质的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3463-3469. |
ZHANG L S, WANG S Q, WANG L X, et al. Synthesis and performances of Li+ modified g-C3N4 for PEO-based composite solid electrolyte[J]. Energy Storage Science and Technology, 2022, 11(11): 3463-3469. | |
14 | 黄渭彬, 张彪, 范金成, 等. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
HUANG W B, ZHANG B, FAN J C, et al. Preparation and modification of ZIF-8 composite PEO based solid electrolyte[J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092. | |
15 | XUE X L, ZHANG X X, LIU Y C, et al. Boosting the performance of solid-state lithium battery based on hybridizing micron-sized LATP in a PEO/PVDF-HFP heterogeneous polymer matrix[J]. Energy Technology, 2020, 8(9): 2000444. |
16 | XU J R, LI J M, LI Y X, et al. Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by InSitu formation of Li3PS4 in the SEI layer[J]. Advanced Materials, 2022, 34(34): e2203281. |
17 | FU F, ZHENG Y, JIANG N, et al. A Dual-Salt PEO-based polymer electrolyte with cross-linked polymer network for high-voltage lithium metal batteries[J]. Chemical Engineering Journal, 2022, 450: 137776. |
18 | WANG Y, CHEN S S, LI Z Y, et al. In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries[J]. Energy Storage Materials, 2022, 45: 474-483. |
19 | LI Y C, VEITH G M, BROWNING K L, et al. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries[J]. Nano Energy, 2017, 40: 9-19. |
20 | FANG Z H, LUO Y F, LIU H T, et al. Boosting the oxidative potential of polyethylene glycol-based polymer electrolyte to 4.36 V by spatially restricting hydroxyl groups for high-voltage flexible lithium-ion battery applications[J]. Advanced Science, 2021, 8(16): e2100736. |
21 | YANG X F, JIANG M, GAO X J, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: Main chain or terminal âOH group?[J]. Energy & Environmental Science, 2020, 13(5): 1318-1325. |
22 | WANG P, CHAI J C, ZHANG Z H, et al. An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7(10): 5295-5304. |
23 | WU M, WANG Z Y, ZHANG W R, et al. High-performance lithium metal batteries enabled by a fluorinated cyclic ether with a low reduction potential[J]. Angewandte Chemie International Edition, 2023, 62(8): e202216169. |
24 | ZHANG Z, WANG J L, YING H, et al. The role of active passivated interface in poly (ethylene oxide) electrolyte for 4.2 V solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2023, 451(15):138680. |
25 | ZHANG Q P, ZHANG N N, YU T H, et al. High-performance PEO-based solid-state LiCoO2 lithium metal battery enabled by poly(acrylic acid) artificial cathode electrolyte interface[J]. Materials Today Energy, 2022, 29: 101128. |
26 | CHEN Y, CUI Y Y, WANG S M, et al. Durable and adjustable interfacial engineering of polymeric electrolytes for both stable Ni-rich cathodes and high-energy metal anodes[J]. Advanced Materials, 2023, 35(18): e2300982. |
[1] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[2] | Chuan HU, Zhiwei HU, Zhendong LI, Shuai LI, Hao WANG, Liping WANG. Tailoring LiPF6-base electrolyte solvation structure toward a stable Lithium-rich manganese-based cathode interface [J]. Energy Storage Science and Technology, 2023, 12(5): 1604-1615. |
[3] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[4] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[5] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[6] | Tao YIN, Longzhou JIA, Xiuliang CHANG, Zuoqiang DAI, Lili ZHENG. Research on thermal safety of soft-pack LiFePO4 battery after high-voltage float charge [J]. Energy Storage Science and Technology, 2022, 11(8): 2546-2555. |
[7] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[8] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[9] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[10] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[11] | Weicheng SHEN, Wenxi ZHEN, Chong SHAO, Qi XIE. Coordinated fault ride through strategy for doubly fed induction generator using a superconducting magnetic energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 136-146. |
[12] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[13] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[14] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[15] | Yanfeng TIAN, Xinxin ZHAO, Qitong FU, Zhe WANG, Xuzhang ZHAO. Structure analysis of high temperature heat storage conductor based on thermal-electricity-magnetic field coupling [J]. Energy Storage Science and Technology, 2021, 10(3): 1051-1059. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||