Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (10): 3075-3086.doi: 10.19799/j.cnki.2095-4239.2023.0401
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xinlan WANG1,2(), Ziqi ZENG1(), Han ZHANG1, Sheng LEI1, Jia XIE1()
Received:
2023-06-09
Revised:
2023-06-20
Online:
2023-10-05
Published:
2023-10-09
Contact:
Ziqi ZENG, Jia XIE
E-mail:wxl199917@163.com;ziqizeng@hust.edu.cn;xiejia@hust.edu.cn
CLC Number:
Xinlan WANG, Ziqi ZENG, Han ZHANG, Sheng LEI, Jia XIE. Research progress of new fluorinated compounds in lithium-ion battery electrolytes[J]. Energy Storage Science and Technology, 2023, 12(10): 3075-3086.
Table 1
Comparison of physical properties of carbonate with different degrees of fluorination[20]"
溶剂 | 熔点Tm/℃ | 沸点Tb/℃ | 密度 ρ (25 ℃)/(g/cm3) | 相对介电常数 εr (20 ℃) | 黏度 η (20℃)/(×10-3 Pa·s) |
---|---|---|---|---|---|
碳酸乙烯酯 | 37.5 | 238 | 1.321 | 90.5(40 ℃) | 1.94(40 ℃) |
氟代碳酸乙烯酯 | 20 | 210 | 1.48 | 79.7 | 4.4/2.3(40 ℃) |
双氟代碳酸乙烯酯 | 8.5 | 129 | 1.52 | 35.4 | 2.7 |
三氟代碳酸乙烯酯 | -54.5 | 91 | 1.6 | 18 | 1.28 |
碳酸二乙酯 | -75 | 126 | 0.975 | 2.8 | 0.82 |
氟代碳酸二乙酯 | — | 135 | 1.06 | 7.5 | 1.21 |
四氟代碳酸二乙酯 | -28.5 | 127.5 | 1.18 | 8.3 | 1.87 |
1 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
2 | 丁徐强, 陶琦, 罗鹰. 锂离子电池在新能源汽车中的设计及应用[J]. 储能科学与技术, 2023, 12(5): 1751-1752. |
DING X Q, TAO Q, LUO Y. Design and application of lithium-ion battery in new energy vehicles[J]. Energy Storage Science and Technology, 2023, 12(5): 1751-1752. | |
3 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
4 | TARASCON J M, GUYOMARD D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+ xMn2O4/carbon Li-ion cells[J]. Solid State Ionics, 1994, 69(3/4): 293-305. |
5 | AURBACH D, ZABAN A, SCHECHTER A, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: I. Li metal anodes[J]. Journal of the Electrochemical Society, 1995, 142(9): 2873-2882. |
6 | EIN-ELI Y, THOMAS S R, KOCH V, et al. Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries[J]. Journal of the Electrochemical Society, 1996, 143(12): L273-L277. |
7 | 张祖豪, 丁晓凯, 罗冬, 等. 富锂锰基层状氧化物正极材料面临的挑战及解决方案[J]. 储能科学与技术, 2021, 10(2): 408-424. |
ZHANG Z H, DING X K, LUO D, et al. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials[J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. | |
8 | JIA H, XU W. Electrolytes for high-voltage lithium batteries[J]. Trends in Chemistry, 2022, 4(7): 627-642. |
9 | XIA L, YU L P, HU D, et al. Electrolytes for electrochemical energy storage[J]. Materials Chemistry Frontiers, 2017, 1(4): 584-618. |
10 | QIN M S, ZENG Z Q, WU Q, et al. Dipole-dipole interactions for inhibiting solvent co-intercalation into a graphite anode to extend the horizon of electrolyte design[J]. Energy & Environmental Science, 2023, 16(2): 546-556. |
11 | FAN X L, WANG C S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566. |
12 | ZHENG L P, ZHANG H, CHENG P F, et al. Li [(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis[J]. Electrochimica Acta, 2016, 196: 169-188. |
13 | GUAN D C, HU G R, PENG Z D, et al. A nonflammable low-concentration electrolyte for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(23): 12575-12587. |
14 | YANG Y, LI P L, WANG N, et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56(67): 9640-9643. |
15 | 陈晓霞, 刘凯, 王保国. 高安全性锂电池电解液研究与应用[J]. 储能科学与技术, 2020, 9(2): 583-592. |
CHEN X X, LIU K, WANG B G. Research on high-safety electrolytes and their application in lithiumion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. | |
16 | CEKIC-LASKOVIC I, VON ASPERN N, IMHOLT L, et al. Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries[J]. Topics in Current Chemistry, 2017, 375(2): 37. |
17 | QIN M S, ZENG Z Q, LIU X W, et al. Revealing surfactant effect of trifluoromethylbenzene in medium-concentrated PC electrolyte for advanced lithium-ion batteries[J]. Advanced Science, 2023, 10(12): doi: 10.1002/advs.202206648. |
18 | MCMILLAN R, SLEGR H, SHU Z X, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81/82: 20-26. |
19 | INABA M, KAWATATE Y, FUNABIKI A, et al. STM study on graphite/electrolyte interface in lithium-ion batteries: Solid electrolyte interface formation in trifluoropropylene carbonate solution[J]. Electrochimica Acta, 1999, 45(1/2): 99-105. |
20 | BOLLOLI M, ALLOIN F, KALHOFF J, et al. Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2015, 161: 159-170. |
21 | MARTINEZ A C, RIGAUD S, GRUGEON S, et al. Chemical reactivity of lithium difluorophosphate as electrolyte additive in LiNi0.6Co0.2Mn0.2O2/graphite cells[J]. Electrochimica Acta, 2022, 426: 140765. |
22 | HUANG L B, LI G, LU Z Y, et al. trans-difluoroethylene carbonate as an electrolyte additive for microsized SiOx@C anodes[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 24916-24924. |
23 | LIU G P, XIA M, GAO J A, et al. Dual-salt localized high-concentration electrolyte for long cycle life silicon-based lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3586-3598. |
24 | WANG X J, LEE H S, LI H, et al. The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries[J]. Electrochemistry Communications, 2010, 12(3): 386-389. |
25 | YANG C, LIAO X B, ZHOU X, et al. Phosphate-rich interface for a highly stable and safe 4.6V LiCoO2 cathode[J]. Advanced Materials, 2023, 35(14): doi: 10.1002/adma.202210966. |
26 | QIN M S, LIU M C, ZENG Z Q, et al. Rejuvenating propylene carbonate-based electrolyte through nonsolvating interactions for wide-temperature Li-ions batteries[J]. Advanced Energy Materials, 2022, 12(48): doi: 10.1002/aenm.202201801. |
27 | 沈旻, 蒋志敏, 李南, 等. 高安全性锂离子电池电解液[J]. 储能科学与技术, 2018, 7(6): 1069-1081. |
SHEN M, JIANG Z M, LI N, et al. High safety electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1069-1081. | |
28 | FAN X L, CHEN L, JI X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries[J]. Chem, 2018, 4(1): 174-185. |
29 | MO J S, YAO Y Q, LI C, et al. A low-concentration all-fluorinated electrolyte for stable lithium metal batteries[J]. Chemical Communications, 2022, 58(89): 12463-12466. |
30 | BIEKER P, WINTER M. Lithium-ionen-technologie und was danach kommen könnte[J]. Chemie in Unserer Zeit, 2016, 50(3): 172-186. |
31 | XU G J, SHANGGUAN X H, DONG S M, et al. Formulation of blended-lithium-salt electrolytes for lithium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3400-3415. |
32 | 谢宏, 黄锴, 杜进桥, 等. 锂离子电池电解液痕量水污染的超声表象[J]. 储能科学与技术, 2022, 11(12): 4030-4037. |
XIE H, HUANG K, DU J Q, et al. Studies on ultrasonic appearance of trace water contamination in lithium-ion battery electrolyte[J]. Energy Storage Science and Technology, 2022, 11(12): 4030-4037. | |
33 | XU C, RENAULT S, EBADI M, et al. LiTDI: A highly efficient additive for electrolyte stabilization in lithium-ion batteries[J]. Chemistry of Materials, 2017, 29(5): 2254-2263. |
34 | KOO B, LEE H, HWANG S, et al. Ionic conduction and speciation in LiPF6 and LiBF4 dimethyl sulfoxide electrolytes: Comparison with propylene carbonate electrolytes[J]. The Journal of Physical Chemistry C, 2023, 127(12): 5676-5682. |
35 | XUE Z M, ZHAO B H, CHEN C H. A new lithium salt with 3-fluoro-1,2-benzenediolato and lithium tetrafluoroborate for lithium battery electrolytes[J]. Journal of Power Sources, 2011, 196(15): 6478-6482. |
36 | GOLDMAN J L, MANK R M, YOUNG J H, et al. Structure-reactivity relationships of methylated tetrahydrofurans with lithium[J]. Journal of the Electrochemical Society, 1980, 127(7): 1461-1467. |
37 | PARK K, YU S, LEE C, et al. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes[J]. Journal of Power Sources, 2015, 296: 197-203. |
38 | KIANI S, GHARIBI H, JAVADIAN S, et al. The effect of the SEI layer on the electrochemical impedance in the graphite/Li[Ni0.5Mn0.3Co0.2]O2 lithium-ion full cells[J]. Applied Surface Science, 2023, 633: 157638. |
39 | NIEDZICKI L, KASPRZYK M, KUZIAK K, et al. Liquid electrolytes based on new lithium conductive imidazole salts[J]. Journal of Power Sources, 2011, 196(3): 1386-1391. |
40 | BERHAUT C L, PORION P, TIMPERMAN L, et al. LiTDI as electrolyte salt for Li-ion batteries: Transport properties in EC/DMC[J]. Electrochimica Acta, 2015, 180: 778-787. |
41 | BERHAUT C L, DEDRYVÈRE R, TIMPERMAN L, et al. A new solvent mixture for use of LiTDI as electrolyte salt in Li-ion batteries[J]. Electrochimica Acta, 2019, 305: 534-546. |
42 | SHKROB I A, PUPEK K Z, GILBERT J A, et al. Chemical stability of lithium 2-trifluoromethyl-4, 5-dicyanoimidazolide, an electrolyte salt for Li-ion cells[J]. The Journal of Physical Chemistry C, 2016, 120(50): 28463-28471. |
43 | XU C, HERNÁNDEZ G, ABBRENT S, et al. Unraveling and mitigating the storage instability of fluoroethylene carbonate-containing LiPF6 electrolytes to stabilize lithium metal anodes for high-temperature rechargeable batteries[J]. ACS Applied Energy Materials, 2019, 2(7): 4925-4935. |
44 | PAN R J, CUI Z H, YI M, et al. Ethylene carbonate-free electrolytes for stable, safer high-nickel lithium-ion batteries[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202103806. |
45 | LIAO C, HAN K S, BAGGETTO L, et al. Synthesis and characterization of lithium bis(fluoromalonato)borate for lithium-ion battery applications[J]. Advanced Energy Materials, 2014, 4(6): 1301368. |
46 | WAN S, JIANG X G, GUO B K, et al. A stable fluorinated and alkylated lithium malonatoborate salt for lithium ion battery application[J]. Chemical Communications, 2015, 51(48): 9817-9820. |
47 | LI Y C, WAN S, VEITH G M, et al. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V[J]. Advanced Energy Materials, 2017, 7(4): 1601397. |
48 | HAN H B, GUO J, ZHANG D J, et al. Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells[J]. Electrochemistry Communications, 2011, 13(3): 265-268. |
49 | FANG Z, MA Q A, LIU P, et al. Novel concentrated Li [(FSO2)(n-C4F9SO2)N]-based ether electrolyte for superior stability of metallic lithium anode[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4282-4289. |
50 | BAI P X, JI X A, ZHANG J X, et al. Formation of LiF-rich cathode-electrolyte interphase by electrolyte reduction[J]. Angewandte Chemie International Edition, 2022, 61(26): doi: 10.1002/anie.202202731. |
51 | HU S G, ZHAO H J, QIAN Y X, et al. Improved high-temperature performance of LiNi0.5Co0.2Mn0.3O2/artificial graphite lithium ion pouch cells by difluoroethylene carbonate[J]. Journal of Energy Storage, 2023, 57: 106266. |
52 | LUO C H, LIU Q, WANG X S, et al. Synergistic-effect of diluent to reinforce anion-solvation-derived interfacial chemistry for 4.5 V-class Li||LiCoO2 batteries[J]. Nano Energy, 2023, 109: 108323. |
53 | PHAM H Q, HWANG E H, KWON Y G, et al. Approaching the maximum capacity of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathodes by charging to high-voltage in a non-flammable electrolyte of propylene carbonate and fluorinated linear carbonates[J]. Chemical Communications, 2019, 55(9): 1256-1258. |
54 | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
FENG M, CHEN N, CHEN R J. Research progress of low-temperature electrolyte for lithium-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 792-807. | |
55 | LEI S, ZENG Z Q, LIU M C, et al. Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries[J]. Nano Energy, 2022, 98: 107265. |
56 | XIA L, CHEN M M, WANG F, et al. Partially fluorinated linear carboxylate esters employed as co-solvents for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2022, 526: 231152. |
57 | KOCH V R, YOUNG J H. The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes[J]. Journal of the Electrochemical Society, 1978, 125(9): 1371-1377. |
58 | CAMPBELL S A, BOWES C, MCMILLAN R S. The electrochemical behaviour of tetrahydrofuran and propylene carbonate without added electrolyte[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 284(1): 195-204. |
59 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
60 | ARAI J. Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries[J]. Journal of the Electrochemical Society, 2003, 150(2): A219. |
61 | XIA L, LEE S X, JIANG Y B, et al. Physicochemical and electrochemical properties of 1, 1, 2, 2-tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether as a co-solvent for high-voltage lithium-ion electrolytes[J]. ChemElectroChem, 2019, 6(14): 3747-3755. |
62 | DAI W H, DONG N, XIA Y G, et al. Localized concentrated high-concentration electrolyte enhanced stability and safety for high voltage Li-ion batteries[J]. Electrochimica Acta, 2019, 320: 134633. |
63 | ZHENG H, ZHOU X, CHENG S, et al. High-voltage LiNi0.5Mn1.5O4 cathode stability of fluorinated ether based on enhanced separator wettability[J]. Journal of the Electrochemical Society, 2019, 166(8): A1456-A1462. |
64 | SHI P, FANG S H, LUO D, et al. A safe electrolyte based on propylene carbonate and non-flammable hydrofluoroether for high-performance lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(9): A1991-A1999. |
65 | KIM C K, KIM K, SHIN K, et al. Synergistic effect of partially fluorinated ether and fluoroethylene carbonate for high-voltage lithium-ion batteries with rapid chargeability and dischargeability[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44161-44172. |
66 | ZHANG H, ZENG Z Q, HE R J, et al. 1, 3, 5-Trifluorobenzene and fluorobenzene co-assisted electrolyte with thermodynamic and interfacial stabilities for high-voltage lithium metal battery[J]. Energy Storage Materials, 2022, 48: 393-402. |
67 | PENG X D, LIN Y K, WANG Y, et al. A lightweight localized high-concentration ether electrolyte for high-voltage Li-Ion and Li-metal batteries[J]. Nano Energy, 2022, 96: 107102. |
68 | LIU M C, LI X, ZHAI B Y, et al. Diluted high-concentration electrolyte based on phosphate for high-performance lithium-metal batteries[J]. Batteries & Supercaps, 2022, 5(5): doi: 10.1002/batt.202100407. |
69 | GU Y X, FANG S H, ZHANG X Y, et al. A non-flammable electrolyte for lithium-ion batteries containing lithium difluoro(oxalato)borate, propylene carbonate and tris(2, 2, 2-trifluoroethyl)phosphate[J]. Journal of the Electrochemical Society, 2020, 167(8): 080524. |
70 | OLDIGES K, ASPERN N, CEKIC‐LASKOVIC I, et al. Impact of trifluoromethylation of adiponitrile on aluminum dissolution behavior in dinitrile-based electrolytes[J]. Journal of The Electrochemical Society, 2018, 165(16): A3773-A3781. |
71 | SU C C, HE M N, REDFERN P C, et al. Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries[J]. Energy & Environmental Science, 2017, 10(4): 900-904. |
72 | WU H L, CHONG Y H, ONG H C, et al. Thermal stability of modified lithium-ion battery electrolyte by flame retardant, tris (2,2,2-trifluoroethyl) phosphite[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(6): 4245-4252. |
73 | MÖNNIGHOFF X, MURMANN P, WEBER W, et al. Post-mortem investigations of fluorinated flame retardants for lithium ion battery electrolytes by gas chromatography with chemical ionization[J]. Electrochimica Acta, 2017, 246: 1042-1051. |
74 | MURMANN P, VON ASPERN N, JANSSEN P, et al. Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(9): A1935-A1942. |
[1] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[2] | Jiwei LI, Ruihan LIU, Taolin LU, Long PAN, Changjun MA, Qingbo LI, Zhiyun ZHAO, Wen YANG, Jingying XIE. Early fault diagnosis of lithium-ion battery packs based on improved local outlier detection and standard deviation method [J]. Energy Storage Science and Technology, 2023, 12(9): 2917-2926. |
[3] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[4] | Xiangyang ZHOU, Yingjie HU, Jiahao LIANG, Qijie ZHOU, Kang WEN, Song CHEN, Juan YANG, Jingjing TANG. Preparation and lithium storage characteristics of high-performance anode materials based on spheroidized tailings of natural flake graphite [J]. Energy Storage Science and Technology, 2023, 12(9): 2767-2777. |
[5] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[6] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2023 to Jul. 31, 2023) [J]. Energy Storage Science and Technology, 2023, 12(9): 3003-3018. |
[7] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[8] | Cong LI, Tao WANG, Yanjie REN, Libo ZHOU, Jian CHEN, Wei CHEN. Cathodic dissolution and protection of molten carbonate fuel cells [J]. Energy Storage Science and Technology, 2023, 12(8): 2444-2456. |
[9] | Zhengguang ZHAO, Zhenying CHEN, Guangqun ZHAI, Xi ZHANG, Xiaodong ZHUANG. Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. |
[10] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[11] | Hengheng XIA, Pengcheng LIANG, Zhongxun AN. Effects of sulfur-containing electrolyte additives on the performance of lithium nickel cobalt manganese oxide//graphite Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2390-2400. |
[12] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[13] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[14] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[15] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||