Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 626-633.doi: 10.19799/j.cnki.2095-4239.2023.0541
• Energy Storage System and Engineering • Previous Articles Next Articles
Ningning HAN1(), Zhuang XU2(), Guangli HE2
Received:
2023-08-11
Revised:
2023-08-21
Online:
2024-02-28
Published:
2024-03-01
Contact:
Zhuang XU
E-mail:1141535418@qq.com;zhuang.xu.a@chnenergy.com.cn
CLC Number:
Ningning HAN, Zhuang XU, Guangli HE. Pressurized water electrolysis: Challenges and recent progress[J]. Energy Storage Science and Technology, 2024, 13(2): 626-633.
Table 1
Summary of the main findings on the production of high pressure hydrogen by electrolysis of water"
序号 | 技术分类 | 氢气压力/ 氧气压力/MPa | 制氢量/ (Nm3/h) | 关键结论 | 参考文献 |
---|---|---|---|---|---|
1 | 碱性电解水 | 10/10 | ~0.1 | 在氢气压力1~3 MPa范围内,压力增加时电解电压降低;在10 MPa下,氢气纯度损失1.5%以上,氢氧互混的安全性管控是挑战。 | [ |
2 | 质子交换膜电解水 | 10/10 5/0.1 | <0.01 | 差压式电解槽电压随氢气压力增大而增加,均压式电解槽电压随氢气压力升高基本不变;10 MPa均压模式下,由于阴极Pt催化氧还原,氢中氧浓度极低,氧中氢浓度达到3%。 | [ |
3 | 质子交换膜电解水 | 10/10 | <0.01 | 操作压力增大后可能导致水在催化层的穿透能力增强,阴阳极反应动力学加快,传质阻力下降,电解槽电压增加不显著。 | [ |
4 | 质子交换膜电解水 | 70/0.1 | 0.7 | 为达到差压耐受力,隔膜厚度需要优化;隔膜水含量差异导致局部厚度差异,影响密封气密性;采用电化学压缩至70 MPa比往复式压缩实测综合能耗降低30%以上。 | [ |
5 | 碱性电解水 | 13.8/13.8 | ~0.5 | 氧中氢浓度过高时导致氢氧反应放热,产生安全隐患。 | [ |
6 | 质子交换膜电解水 | 13/13 | 1 | 在高压氢气下,即使采用厚的隔膜也发生显著的氢氧互混;大面积电极易发生水分布不均导致隔膜润湿不均,局部反应受阻,发生氢气聚集,成为安全隐患。 | [ |
1 | Hydrogen Council. Hydrogen for net-zero[R]. McKinsey&Company, 2021: 56. |
2 | EAMES I, AUSTIN M, WOJCIK A. Injection of gaseous hydrogen into a natural gas pipeline[J]. International Journal of Hydrogen Energy, 2022, 47(61): 25745-25754. |
3 | LIU J X, TENG L, LIU B, et al. Analysis of hydrogen gas injection at various compositions in an existing natural gas pipeline[J]. Frontiers in Energy Research, 2021, 9: 685079. |
4 | GHAVAM S, VAHDATI M, GRANT WILSON I A, et al. Sustainable ammonia production processes[J]. Frontiers in Energy Research, 2021, 9: 580808. |
5 | XU Z, DONG W P, YANG K, et al. Development of efficient hydrogen refueling station by process optimization and control[J]. International Journal of Hydrogen Energy, 2022, 47(56): 23721-23730. |
6 | KELLY N A, GIBSON T L, OUWERKERK D B. Generation of high-pressure hydrogen for fuel cell electric vehicles using photovoltaic-powered water electrolysis[J]. International Journal of Hydrogen Energy, 2011, 36(24): 15803-15825. |
7 | KELLY N A, GIBSON T L, OUWERKERK D B. A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: Design and initial results[J]. International Journal of Hydrogen Energy, 2008, 33(11): 2747-2764. |
8 | HANCKE R, HOLM T, ULLEBERG Ø. The case for high-pressure PEM water electrolysis[J]. Energy Conversion and Management, 2022, 261: 115642. |
9 | SUERMANN M, KIUPEL T, SCHMIDT T J, et al. Electrochemical hydrogen compression: Efficient pressurization concept derived from an energetic evaluation[J]. Journal of the Electrochemical Society, 2017, 164(12): F1187-F1195. |
10 | LEE B, HEO J, KIM S, et al. Economic feasibility studies of high pressure PEM water electrolysis for distributed H2 refueling stations[J]. Energy Conversion and Management, 2018, 162: 139-144. |
11 | CORREA G, MAROCCO P, MUÑOZ P, et al. Pressurized PEM water electrolysis: Dynamic modelling focusing on the cathode side[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4315-4327. |
12 | LAGADEC M F, GRIMAUD A. Water electrolysers with closed and open electrochemical systems[J]. Nature Materials, 2020, 19: 1140-1150. |
13 | VOGT H. The quantities affecting the bubble coverage of gas-evolving electrodes[J]. Electrochimica Acta, 2017, 235: 495-499. |
14 | ABDELGHANI-IDRISSI S, DUBOUIS N, GRIMAUD A, et al. Effect of electrolyte flow on a gas evolution electrode[J]. Scientific Reports, 2021, 11: 4677. |
15 | SUERMANN M, SCHMIDT T J, BÜCHI F N. Cell performance determining parameters in high pressure water electrolysis[J]. Electrochimica Acta, 2016, 211: 989-997. |
16 | BAKKER M M, VERMAAS D A. Gas bubble removal in alkaline water electrolysis with utilization of pressure swings[J]. Electrochimica Acta, 2019, 319: 148-157. |
17 | HANKE-RAUSCHENBACH R, BENSMANN B, MILLET P. Hydrogen production using high-pressure electrolyzers[M]//Compendium of Hydrogen Energy. Amsterdam: Elsevier, 2015: 179-224. |
18 | JANG D, CHO H S, KANG S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied Energy, 2021, 287: 116554. |
19 | SUERMANN M, PĂTRU A, SCHMIDT T J, et al. High pressure polymer electrolyte water electrolysis: Test bench development and electrochemical analysis[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12076-12086. |
20 | JANSSEN H, BRINGMANN J C, EMONTS B, et al. Safety-related studies on hydrogen production in high-pressure electrolysers[J]. International Journal of Hydrogen Energy, 2004, 29(7): 759-770. |
21 | SCHALENBACH M, CARMO M, FRITZ D L, et al. Pressurized PEM water electrolysis: Efficiency and gas crossover[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14921-14933. |
22 | SCHALENBACH M, ZERADJANIN A R, KASIAN O, et al. A perspective on low-temperature water electrolysis-challenges in alkaline and acidic technology[J]. International Journal of Electrochemical Science, 2018, 13(2): 1173-1226. |
23 | GRIGORIEV S A, MILLET P, KOROBTSEV S V, et al. Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5986-5991. |
24 | KULESHOV N V, KULESHOV V N, DOVBYSH S A, et al. Development and performances of a 0.5kW high-pressure alkaline water electrolyser[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29441-29449. |
25 | ISHIKAWA H, HARYU E, KAWASAKI N, et al. Development of 70 MPa differential-pressure water electrolysis stack[J]. Honda R&D Technical Review, 2016, 28(1): 86-93. |
26 | KAWASAKI N, HARYU E, ISHIKAWA H, et al. Study of seal structure of high-differential-pressure water electrolysis cell[J]. Honda R&D Technical Review, 2013, 25(2): 137-144. |
27 | HARYU E, NAKAZAWA K, TARUYA K, et al. Mechanical structure and performance evaluation of high differential pressure water electrolysis cell[J]. Honda R&D Technical Review, 2011, 23(2): 97-105. |
28 | SALEHMIN M N I, HUSAINI T, GOH J, et al. High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production[J]. Energy Conversion and Management, 2022, 268: 115985. |
29 | BERNARDINI M, COMISSO N, DAVOLIO G, et al. Formation of nickel hydrides by hydrogen evolution in alkaline media[J]. Journal of Electroanalytical Chemistry, 1998, 442(1/2): 125-135. |
30 | NIKITIN V S, OSTANINA T N, RUDOI V M, et al. Features of hydrogen evolution during electrodeposition of loose deposits of copper, nickel and zinc[J]. Journal of Electroanalytical Chemistry, 2020, 870: 114230. |
31 | SCHRÖDER V, EMONTS B, JANSSEN H, et al. Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar[J]. Chemical Engineering & Technology, 2004, 27(8): 847-851. |
32 | THAM M J, WALKER R D Jr, GUBBINS K E. Diffusion of oxygen and hydrogen in aqueous potassium hydroxide solutions[J]. The Journal of Physical Chemistry, 1970, 74(8): 1747-1751. |
33 | KHATIB F N, WILBERFORCE T, IJAODOLA O, et al. Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 1-14. |
34 | SCHALENBACH M, HOEFNER T, PACIOK P, et al. Gas permeation through nafion. part 1: Measurements[J]. The Journal of Physical Chemistry C, 2015, 119(45): 25145-25155. |
35 | GRIGORIEV S A, POREMBSKIY V I, KOROBTSEV S V, et al. High-pressure PEM water electrolysis and corresponding safety issues[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2721-2728. |
36 | SCHALENBACH M, STOLTEN D. High-pressure water electrolysis: Electrochemical mitigation of product gas crossover[J]. Electrochimica Acta, 2015, 156: 321-327. |
37 | SCHALENBACH M, LUEKE W, STOLTEN D. Hydrogen diffusivity and electrolyte permeability of the zirfon PERL separator for alkaline water electrolysis[J]. Journal of the Electrochemical Society, 2016, 163(14): F1480-F1488. |
38 | TRINKE P, HAUG P, BRAUNS J, et al. Hydrogen crossover in PEM and alkaline water electrolysis: Mechanisms, direct comparison and mitigation strategies[J]. Journal of the Electrochemical Society, 2018, 165(7): F502-F513. |
39 | MULDER M. Characterisation of membranes[M]//Basic Principles of Membrane Technology. Dordrecht: Springer, 1996: 157-209. |
40 | HAUG P, KOJ M, TUREK T. Influence of process conditions on gas purity in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(15): 9406-9418. |
[1] | Jing BAI, Huifang FAN, Siqi CUI, Chuang XU, Yi ZHANG, Size GUAN, Hanfei YANG, Yifei JIA, Shuwei GENG, Huifan ZHENG. Experimental study on heat dissipation performance of automotive fuel cells [J]. Energy Storage Science and Technology, 2024, 13(2): 390-395. |
[2] | Yun WANG, Fei MENG, Chao ZHANG, Tao LI, Bo TIAN, Jiangpeng LI, Haidong CHEN, Zhihua ZHANG. Effect of ammonia decomposition hydrogen production and energy storage system capacity on performance of power system [J]. Energy Storage Science and Technology, 2024, 13(2): 589-597. |
[3] | Xupeng YAN, Qichen LU, Zhibo REN, Jinyi WANG, Xiaolong Wang, Liping LIU, Wei WANG, Weiqi GUO, Peng LIU, Fangjia LI. Progress in developing commercial anion exchange membranes for hydrogen production by water electrolysis [J]. Energy Storage Science and Technology, 2023, 12(9): 2811-2822. |
[4] | Shiying ZHAN, Huanhuan LI, Fang HU. The research process of cathode materials for aqueous zinc-ioncapacitors [J]. Energy Storage Science and Technology, 2023, 12(9): 2799-2810. |
[5] | Shuhui ZHOU, Xiulin WANG, Pinjia DUAN, Yu ZHANG, Yiyan SUI, Lu LU. Analysis of high-pressure gaseous hydrogen storage technology [J]. Energy Storage Science and Technology, 2023, 12(8): 2668-2679. |
[6] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[7] | Jin LI, Qingsong WANG, Depeng KONG, Xiaodong WANG, Zhenhua YU, Yanfei LE, Xinyan HUANG, Zhenkai HU, Houfu WU, Huabin FANG, Caowei, Shaoyu ZHANG, Ping ZHUO, Ye CHEN, Ziting LI, Wenxin MEI, Yue ZHANG, Lixiang ZHAO, Liang TANG, Zonghou HUANG, Chi CHEN, Yanhu LIU, Yuxi CHU, Xiaoyuan XU, Jin ZHANG, Yikai LI, Rong FENG, Biao YANG, Bo HU, Xiaoying YANG. Research progress on the safety assessment of lithium-ion battery energy storage [J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. |
[8] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[9] | Jialiang LIU, Cuijing GUO, Huanling WANG. Safety detection and verification of energy storage in lithium-ion battery based on fire fault tree model [J]. Energy Storage Science and Technology, 2023, 12(5): 1695-1704. |
[10] | Kuijie LI, Ping LOU, Minyuan GUAN, Jinlong MO, Weixin ZHANG, Yuancheng CAO, Shijie CHENG. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway [J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. |
[11] | Xing WANG, Jun SUN, Ningfang CHEN, Li YAN. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy [J]. Energy Storage Science and Technology, 2023, 12(3): 857-869. |
[12] | Song XU, Mingyu WANG, Liangsheng LI, Liangdong ZHAO, Zihui SUN, Conghui ZHANG, Zihan WANG. Zinc-nickel battery based on a 3D conductive film and its application in intelligent lock [J]. Energy Storage Science and Technology, 2023, 12(11): 3330-3339. |
[13] | Keke LIU, Yongfeng LIU, Pucheng PEI, Shengzhuo YAO, Lu ZHANG. Design of a novel flow channel structure of PEMFC based on Koch snowflake [J]. Energy Storage Science and Technology, 2023, 12(11): 3361-3368. |
[14] | Qili LIN, Hongxun QI, Jingjing HUANG, Bingcheng ZHANG, Zhen CHEN, Zhenkun XIAO. Levelized cost of combined hydrogen production by water electrolysis with alkaline-proton exchange membrane [J]. Energy Storage Science and Technology, 2023, 12(11): 3572-3580. |
[15] | Song CI, Congjia ZHANG, Baochang LIU, Yanglin ZHOU. Dynamic reconfigurable battery energy storage technology: Principle and application [J]. Energy Storage Science and Technology, 2023, 12(11): 3445-3455. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||