Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2799-2810.doi: 10.19799/j.cnki.2095-4239.2023.0331
• Energy Storage Materials and Devices • Previous Articles Next Articles
Shiying ZHAN1,2(), Huanhuan LI2, Fang HU2()
Received:
2023-05-08
Revised:
2023-05-31
Online:
2023-09-05
Published:
2023-09-16
Contact:
Fang HU
E-mail:zhanshiying@greelto.com;hufang25@sut.edu.cn
CLC Number:
Shiying ZHAN, Huanhuan LI, Fang HU. The research process of cathode materials for aqueous zinc-ioncapacitors[J]. Energy Storage Science and Technology, 2023, 12(9): 2799-2810.
Fig. 1
(a) Schematic illustration for the preparation of 3D porous PZC-A750 framework; (b) Rate performance of obtained-ZICs; (c) Ragone plots of Zn//PZC-A750 and Zn//PPy-A750 devices compared with other reported devices; (d) Schematic illustration for the transportation of ions and electrons; (e) Capacitive contributions of Zn//PZC-A750 ZICs[22]; (f) and (g) Schematic diagram of energy storage and ion transport of Zn//CT/SWNT[24]"
Fig. 2
(a) The structure energy of H-rGO and Zn-rGO; (b) The calculated adsorption energy of H+ and Zn2+ on rGO;(c) The optimized charge-density-difference patterns; (d) Schematic diagram for the H+ adsorption-induced distortion of graphitic structure in rGO sheets during charge/discharge process[30]; (e) Fabrication processes of the N-GNF@CFs electrode[31]; (f) and (g) The mechanical performance of CFZHSCs under various bending angles[36]"
Fig. 3
(a)—(b) Kinetic analysis of Zn2+ storage in the RuO2·H2O: a relationship curve of peak current versus scan rate and capacitive contribution[40]; (c) XRD patterns; (d)—(e) GITT curves and ion diffusion coefficients[44]; (f) TEM images of Co9S8@MnO2-60; (g) The as-built structural model of MnO2 structure with different views; (h) The energy barrier of Na atom migrations on a single layer of MnO2 surface without defects and containing oxygen vacancies; (i) CV curves of Co9S8@MnO2-60-based ZICs[45]"
Fig. 4
(a) EIS of Ti3C2T x -DMAC、Ti3C2T x -DMSO、Ti3C2T x -CAN and Ti3C2T x -H2O electrode materials; (b) Ragone plot of the fabricated MSCs and different types of energy storage devices; (c) Ex situ XRD patterns of the Ti3C2T x cathode delaminated with DMAC; (d) Rate stabilities of MSCs[54]; (e) GCD curves of composite electrodes; (f) Anti-self-discharge performance of the obtained ZICs; (g) Schematic illustration of ions transport model in Ti2CT x /C electrode after Sn4+ pre-intercalation[55]"
1 | XU J J, ZHANG J X, POLLARD T P, et al. Electrolyte design for Li-ion batteries under extreme operating conditions[J]. Nature, 2023, 614(7949): 694-700. |
2 | YAO Y X, CHEN X, YAO N, et al. Unlocking charge transfer limitations for extreme fast charging of Li-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(4): e202214828. |
3 | CHEN Z Q, DANILOV D L, EICHEL R A, et al. Porous electrode modeling and its applications to Li-ion batteries[J]. Advanced Energy Materials, 2022, 12(32): 2201506. |
4 | QIN N, JIN L M, LU Y Y, et al. Over-potential tailored thin and dense lithium carbonate growth in solid electrolyte interphase for advanced lithium ion batteries[J]. Advanced Energy Materials, 2022, 12(15): 2103402. |
5 | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
PEI Y W, ZHANG H, WANG X H. Recent advances in the electrolytes of rechargeable zinc-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. | |
6 | ZHAI S L, JIANG Z S, CHEN X C, et al. Flexible one-dimensional Zn-based electrochemical energy storage devices: Recent progress and future perspectives[J]. Journal of Materials Chemistry A, 2021, 9(47): 26573-26602. |
7 | 王心怡, 李维杰, 韩朝, 等. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225. |
WANG X Y, LI W J, HAN C, et al. Challenges and optimization strategies of the anode of aqueous zinc-ion battery[J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. | |
8 | 婷婷, 林其杭, 刘长洋, 等. 水系锌离子电池二氧化锰正极改性研究进展[J]. 储能科学与技术, 2023, 12(3): 754-767. |
TING T, LIN Q H, LIU C Y, et al. Research progress in modification of manganese dioxide as cathode materials for aqueous zinc-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 754-767. | |
9 | 衡永丽, 谷振一, 郭晋芝, 等. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
HENG Y L, GU Z Y, GUO J Z, et al. Study on Na3V2(PO4)3@C as cathode material for water-based zinc ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. | |
10 | WANG Z Q, CHEN H M, LIU X D, et al. Amorphous K-buserite microspheres for high-performance aqueous Zn-ion batteries and hybrid supercapacitors[J]. Advanced Science, 2023, 10(13): 2207329. |
11 | WANG W J, LIU D X, JIANG Y Q, et al. Mechanism enhancement of V3O7/V6O13 heterostructures to achieve high-performance aqueous Zn-Ion batteries[J]. Chemical Engineering Journal, 2023, 463: 142309. |
12 | ZHU K Y, JIANG W K, WANG Z S, et al. Hewettite ZnV6O16⋅8H2O with remarkably stable layers and ultralarge interlayer spacing for high-performance aqueous Zn-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(1): doi: 10.1002/anie. 202213368. |
13 | ZHANG Y M, JIANG S Y, LI Y L, et al. In situ grown hierarchical electrospun nanofiber skeletons with embedded vanadium nitride nanograins for ultra-fast and super-long cycle life aqueous Zn-ion batteries[J]. Advanced Energy Materials, 2023, 13(5): 2202826. |
14 | DONG L B, MA X P, LI Y, et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2018, 13: 96-102. |
15 | MA X P, CHENG J Y, DONG L B, et al. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2019, 20: 335-342. |
16 | WANG L, PENG M K, CHEN J R, et al. High energy and power zinc ion capacitors: A dual-ion adsorption and reversible chemical adsorption coupling mechanism[J]. ACS Nano, 2022, 16(2): 2877-2888. |
17 | SINGH G, MARIA RUBAN A, GENG X, et al. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation[J]. Chemical Engineering Journal, 2023, 451: 139045. |
18 | MANSUER M, MIAO L, QIN Y, et al. Trapping precursor-level functionalities in hierarchically porous carbons prepared by a pre-stabilization route for superior supercapacitors[J]. Chinese Chemical Letters, 2023, 34(3): 107304. |
19 | LONG Y Y, AN X Y, ZHANG H, et al. Highly graphitized lignin-derived porous carbon with hierarchical N/O co-doping "core-shell" superstructure supported by metal-organic frameworks for advanced supercapacitor performance[J]. Chemical Engineering Journal, 2023, 451: 138877. |
20 | SHAO H, WU Y C, LIN Z F, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49(10): 3005-3039. |
21 | WU J P, LIU R R, LI M, et al. Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors[J]. Journal of Energy Storage, 2022, 48: 103996. |
22 | ZHU X Q, GUO F J, YANG Q, et al. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework[J]. Journal of Power Sources, 2021, 506: 230224. |
23 | SHANG K Z, LIU Y J, CAI P W, et al. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2022, 10(12): 6489-6498. |
24 | CAO Y F, TANG X H, LIU M N, et al. Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode[J]. Chemical Engineering Journal, 2022, 431: 133241. |
25 | LI Y, YANG W, YANG W, et al. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry[J]. Nano-Micro Letters, 2021, 13(1): 95. |
26 | BILAL M, ULLAH RASHID E, ZDARTA J, et al. Graphene-based nanoarchitectures as ideal supporting materials to develop multifunctional nanobiocatalytic systems for strengthening the biotechnology industry[J]. Chemical Engineering Journal, 2023, 452: 139509. |
27 | LIU T, YANG Y, CAO S W, et al. Pore perforation of graphene coupled with in situ growth of Co3Se4 for high-performance Na-ion battery[J]. Advanced Materials, 2023, 35(13): 2207752. |
28 | LUO J R, XU L, LIU H M, et al. Harmonizing graphene laminate spacing and zinc-ion solvated structure toward efficient compact capacitive charge storage[J]. Advanced Functional Materials, 2022, 32(20): 2112151. |
29 | LI X, LI Y, ZHAO X, et al. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors[J]. Energy Storage Materials, 2022, 53: 505-513. |
30 | XU H, HE W J, LI Z W, et al. Revisiting charge storage mechanism of reduced graphene oxide in zinc ion hybrid capacitor beyond the contribution of oxygen-containing groups[J]. Advanced Functional Materials, 2022, 32(16): 2111131. |
31 | WEI S, WAN C C, LI X G, et al. Constructing N-doped and 3D Hierarchical Porous graphene nanofoam by plasma activation for supercapacitor and Zn ion capacitor[J]. iScience, 2023, 26(2): 105964. |
32 | ZHOU Y J, LUO J R, SHAO Y Y, et al. Progress on carbonene-based materials for Zn-ion hybrid supercapacitors[J]. New Carbon Materials, 2022, 37(5): 918-935. |
33 | WANG H Y, YE W Q, YANG Y, et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy, 2021, 85: 105942. |
34 | LI X, LI Y, XIE S Y, et al. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes[J]. Chemical Engineering Journal, 2022, 427: 131799. |
35 | LI R X, SHEN X P, JI Z Y, et al. Ultralight coaxial fiber-shaped zinc-ion hybrid supercapacitor with high specific capacitance and energy density for wearable electronics[J]. Chemical Engineering Journal, 2023, 457: 141266. |
36 | ZHAO J X, CONG Z F, HU J, et al. Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system[J]. Nano Energy, 2022, 93: 106893. |
37 | ZHANG X S, PEI Z X, WANG C J, et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics[J]. Small, 2019, 15(47): 1903817. |
38 | JAVED M S, ASIM S, NAJAM T, et al. Recent progress in flexible Zn-ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications[J]. Carbon Energy, 2023, 5(1): e271. |
39 | WANG C, ZENG X, CULLEN P J, et al. The rise of flexible zinc-ion hybrid capacitors: Advances, challenges, and outlooks[J]. Journal of Materials Chemistry A, 2021, 9(35): 19054-19082. |
40 | DONG L B, YANG W, YANG W, et al. High-power and ultralong-life aqueous zinc-ion hybrid capacitors based on pseudocapacitive charge storage[J]. Nano-Micro Letters, 2019, 11(1): 94. |
41 | MA X P, WANG J J, WANG X L, et al. Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(6): 5478-5486. |
42 | BLANC L E, KUNDU D P, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799. |
43 | WU B K, ZHANG G B, YAN M Y, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery[J]. Small, 2018, 14(13): 1703850. |
44 | REN H, ZHANG L, ZHANG J Y, et al. Na+ pre-intercalated Na0.11MnO2 on three-dimensional graphene as cathode for aqueous zinc ion hybrid supercapacitor with high energy density[J]. Carbon, 2022, 198: 46-56. |
45 | LI Q Q, LIU M J, HUANG F Z, et al. Co9S8@MnO2 core-shell defective heterostructure for High-Voltage flexible supercapacitor and Zn-ion hybrid supercapacitor[J]. Chemical Engineering Journal, 2022, 437: 135494. |
46 | ZHANG M H, XU W, WU L S, et al. Recent progress in MXene-based nanomaterials for highperformance aqueous zinc-ion hybrid capacitors[J]. New Carbon Materials, 2022, 37(3): 508-526. |
47 | SANG X H, XIE Y, LIN M W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene[J]. ACS Nano, 2016, 10(10): 9193-9200. |
48 | PU S, WANG Z X, XIE Y T, et al. Origin and regulation of self-discharge in MXene supercapacitors[J]. Advanced Functional Materials, 2023, 33(8): 2208715. |
49 | CHENG T, YANG X L, YANG S, et al. Flexible transparent bifunctional capacitive sensors with superior areal capacitance and sensing capability based on PEDOT: PSS/MXene/Ag grid hybrid electrodes[J]. Advanced Functional Materials, 2023, 33(5): 2210997. |
50 | ZHANG J, ZHANG X Y, YUE W B. Boosting electrocatalytic oxygen reduction performance of CoNC catalysts on Ti3C2 MXene by the synergistic effect with oxygen vacancy-rich TiO2[J]. Chemical Engineering Journal, 2023, 456: 141101. |
51 | SIWAL S S, KAUR H, CHAUHAN G, et al. MXene-based nanomaterials for biomedical applications: Healthier substitute materials for the future[J]. Advanced NanoBiomed Research, 2023, 3(1): 2200123. |
52 | LV Y H, ZHANG L L, WEI X, et al. The emerging of zinc-ion hybrid supercapacitors: Advances, challenges, and future perspectives[J]. Sustainable Materials and Technologies, 2023, 35: e00536. |
53 | CHEN J Z, CHEN H, CHEN M F, et al. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors[J]. Chemical Engineering Journal, 2022, 428: 131380. |
54 | LIU W J, LI L, HU C Q, et al. Intercalation of small organic molecules into Ti3C2Tx MXene cathodes for flexible high-volume-capacitance Zn-ion microsupercapacitor[J]. Advanced Materials Technologies, 2022, 7(12): 2200158. |
55 | LI X L, LI M A, YANG Q, et al. Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced Zn ion transportation and superior cycle lifespan[J]. Advanced Energy Materials, 2020, 10(35): 2001394. |
[1] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[2] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
[3] | Xiaowei HUANG, Shaopeng LI, Xiaogang ZHANG. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. |
[4] | Yuefeng LI, Yintao Wei, Xianzhou PENG, Feng XIANG, Hangfeng WANG, Yong SUN, Weipan XU, Wenqiang HUANG. Thermal simulation analysis and optimal design for the influence of altitude on the forced air cooling system for energy storage lithium-ion battery pack [J]. Energy Storage Science and Technology, 2023, 12(9): 2954-2961. |
[5] | Yibiao GUAN, Jinran SHEN, Jialiang LIU, Zhanzhan QU, Fei GAO, Shiyang LIU, Cuijing GUO, Shuqin ZHOU, Shanshan FU. Comprehensive performance evaluation standards for energy storage lithium-ion batteries guided by safe and high-quality applications [J]. Energy Storage Science and Technology, 2023, 12(9): 2946-2953. |
[6] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. |
[7] | Yun DI, Zhengzhu ZHOU, Huihong DANG, Zhihao GE. Modeling and verification of electric-thermal coupling in batteries based on ECM [J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648. |
[8] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[9] | Ming LI, Jinyuan XIE, Muchu QIU, Liang SHAO, Qiang HUO. Research on balanced thermal management and energy saving of energy storage system based on planning curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2585-2593. |
[10] | Yonghao HUANG, Guojing ZANG, Weiya ZHU, Youhao LIAO, Weishan LI. Enhancing interfacial stability between lithium-containing ceramic separator and 4.35 V LiNi0.8Co0.1Mn0.1O2 cathode through LiF additives [J]. Energy Storage Science and Technology, 2023, 12(8): 2361-2369. |
[11] | Chenchen DONG, Dashuai SUN, Jinglong WANG. Battery high-voltage fault early warning based on improved online migration learning algorithm [J]. Energy Storage Science and Technology, 2023, 12(8): 2575-2584. |
[12] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[13] | Yu HAN, Shengling CAO, Jing NING, Kangli WANG, Kai JIANG, Min ZHOU. Strategies for interfacial modification in lithium metal batteries with polymers [J]. Energy Storage Science and Technology, 2023, 12(8): 2491-2503. |
[14] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[15] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||