Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1921-1928.doi: 10.19799/j.cnki.2095-4239.2024.0029
• Energy Storage System and Engineering • Previous Articles Next Articles
Yaxin ZHANG1(), Quan ZHANG1(), Xujing LOU1, Hao ZHOU2, Zhiwen CHEN2, Gang LONG2
Received:
2024-01-09
Revised:
2024-01-19
Online:
2024-06-28
Published:
2024-06-26
Contact:
Quan ZHANG
E-mail:yaxinzhang@hnu.edu.cn;quanzhang@hnu.edu.cn
CLC Number:
Yaxin ZHANG, Quan ZHANG, Xujing LOU, Hao ZHOU, Zhiwen CHEN, Gang LONG. Study on the temperature control effect of a two-phase cold plate liquid cooling system in a container energy storage power station[J]. Energy Storage Science and Technology, 2024, 13(6): 1921-1928.
1 | 中国能源研究会储能专委会, 中关村储能产业技术联盟. 储能产业研究白皮书2023(摘要版). [R/OL].(2023-05-17)[2023-09-29]. https://cpnn.com.cn/news/baogao2023/202307/W020230725381488198635.pdf. |
2 | LU M Y, ZHANG X L, JI J, et al. Research progress on power battery cooling technology for electric vehicles[J]. Journal of Energy Storage, 2020, 27: 101155. |
3 | CHEN J W, KANG S Y, JIAQIANG E, et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review[J]. Journal of Power Sources, 2019, 442: 227228. |
4 | QIN P, SUN J H, YANG X L, et al. Battery thermal management system based on the forced-air convection: A review[J]. eTransportation, 2021, 7: 100097. |
5 | PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382. |
6 | AL-ZAREER M, DINCER I, ROSEN M A. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles[J]. Journal of Power Sources, 2017, 363: 291-303. |
7 | CHEN K, SONG M X, WEI W, et al. Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement[J]. Energy, 2018, 145: 603-613. |
8 | WANG H T, TAO T, XU J, et al. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries[J]. Applied Thermal Engineering, 2020, 178: 115591. |
9 | 郑海, 续彦芳, 刘汉涛, 等. 基于液体介质的锂离子动力电池热管理系统实验分析[J]. 储能科学与技术, 2020, 9(3): 885-891. |
ZHENG H, XU Y F, LIU H T, et al. Experimental analysis of thermal management system of lithium ion power battery based on liquid medium[J]. Energy Storage Science and Technology, 2020, 9(3): 885-891. | |
10 | 陈雅, 范立云, 李晶雪, 等. 二次流蛇形通道锂离子电池散热性能[J]. 储能科学与技术, 2023, 12(6): 1880-1889. |
CHEN Y, FAN L Y, LI J X, et al. Research on heat dissipation of lithium-ion batteries with secondary flow serpentine channel[J]. Energy Storage Science and Technology, 2023, 12(6): 1880-1889. | |
11 | SUN X Q, ZHANG C, HAN Z W, et al. Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers[J]. Energy, 2023, 274: 127335. |
12 | HOU F Z, WANG W B, ZHANG H Y, et al. Experimental evaluation of a compact two-phase cooling system for high heat flux electronic packages[J]. Applied Thermal Engineering, 2019, 163: 114338. |
13 | HONG S H, JANG D S, PARK S, et al. Thermal performance of direct two-phase refrigerant cooling for lithium-ion batteries in electric vehicles[J]. Applied Thermal Engineering, 2020, 173: 115213. |
14 | WANG Z R, HUANG L P, HE F. Design and analysis of electric vehicle thermal management system based on refrigerant-direct cooling and heating batteries[J]. Journal of Energy Storage, 2022, 51: 104318. |
15 | YANG K J, LI Y H, YUAN J, et al. A thermal management system for an energy storage battery container based on cold air directional regulation[J]. Journal of Energy Storage, 2023, 61: 106679. |
16 | XIN-YU, YI-WEN, JING-TANG. Inlet setting strategy via machine learning algorithm for thermal management of container-type battery energy-storage systems (BESS)[J]. International Journal of Heat and Mass Transfer, 2024, 218: 124712. |
17 | 邹燚涛, 裴后举, 施红, 等. 某型集装箱储能电池组冷却风道设计及优化[J]. 储能科学与技术, 2020, 9(6): 1864-1871. |
ZOU Y T, PEI H J, SHI H, et al. Design and optimization of the cooling duct system for the battery pack of a certain container energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1864-1871. | |
18 | LI Z, ZHANG J B, WU B, et al. Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples[J]. Journal of Power Sources, 2013, 241: 536-553. |
[1] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[2] | Junli GUO. Legal governance measures for fire safety of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(5): 1744-1747. |
[3] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[4] | Zhige TAO, Shunbing ZHU, Shuangping HOU, Ke LI, He WANG. Comprehensive research on fire and safety protection technology for lithium battery energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(2): 536-545. |
[5] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[6] | Panchun TANG, Rong YAN, Can ZHANG, Ze SUN. Simulation of air- and liquid-cooled thermal management of stacked automotive supercapacitors [J]. Energy Storage Science and Technology, 2024, 13(2): 483-491. |
[7] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[8] | Xin GAO, Ruogu WANG, Wenjing GAO, Zejun DENG, Ruiqi LIANG, Kun YANG. Consistency evaluation method of battery pack in energy storage power station based on running data [J]. Energy Storage Science and Technology, 2023, 12(9): 2937-2945. |
[9] | Hongxin WU, Aikui LI, Cun DONG, Shumin SUN, Guanglei LI, Shibo WANG. Control strategy for wind power fluctuation stabilization with energy storage and frequency modulation reserve [J]. Energy Storage Science and Technology, 2023, 12(4): 1194-1203. |
[10] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[11] | Guangqiang SUN, Zhiqiang LI, Fang WANG, Hong DENG, Yichun BA. Research on cooling and fixing of lithium-ion battery cooling and fixed integrated cold plate heat dissipation [J]. Energy Storage Science and Technology, 2023, 12(11): 3352-3360. |
[12] | Kangyong YIN, Fengbo TAO, Wei LIANG, Zhiyuan NIU. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station [J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. |
[13] | Yong XIAO, Jun XU. Risk assessment of battery safe operation in energy storage power station based on combination weighting and TOPSIS [J]. Energy Storage Science and Technology, 2022, 11(8): 2574-2584. |
[14] | Mingfei LI, Mumin RAO, Wanmei SUN, Shuxin CUI, Wei CHEN. Analysis method based on porous medium modeling for thermal management system of large capacity battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2526-2536. |
[15] | Jingqiang ZHANG, Haimin WANG, Nan LU. Temperature field characteristics of a small NCM811 traction battery module cooled by insulating oil immersion [J]. Energy Storage Science and Technology, 2022, 11(8): 2612-2619. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||