Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3491-3503.doi: 10.19799/j.cnki.2095-4239.2024.0396
• Energy Storage System and Engineering • Previous Articles Next Articles
Yajun QIAO1(), Yimao REN2, Zijian TAN1, Huirou ZHANG2, Weixiong WU2()
Received:
2024-05-06
Revised:
2024-05-31
Online:
2024-10-28
Published:
2024-10-30
Contact:
Weixiong WU
E-mail:20288367@qq.com;weixiongwu@jnu.edu.cn
CLC Number:
Yajun QIAO, Yimao REN, Zijian TAN, Huirou ZHANG, Weixiong WU. Modeling internal short circuit and thermal runaway triggers in single-layer lithium-ion battery cells[J]. Energy Storage Science and Technology, 2024, 13(10): 3491-3503.
Table 2
Electrochemical and thermodynamic parameters[9, 34-38]"
参数 | 铜 | 负极 | 隔膜 | 正极 | 铝 |
---|---|---|---|---|---|
密度ρ/(kg/m3) | 8960 | 1200 | 525 | 2860 | 2770 |
比热容cp /[W/(m·K)] | 385 | 1437.4 | 2050 | 1150 | 897 |
热导率k/[J/(kg·K)] | 395 | 0.4 | 0.5 | 0.4 | 240 |
最大锂浓度cs_max/(mol/m3) | — | 31507 | — | 49000 | — |
初始电解质盐浓度ce,0/(mol/m3) | — | 2000 | 2000 | 2000 | — |
电荷转移系数αa,αc | — | 0.5,0.5 | — | 0.5,0.5 | — |
固相锂扩散率Ds/(m2/s) | — | 3.9×10-14 | — | 1×10-13 | — |
电解质扩散率De/(m2/s) | — | 1.5×10-11 | 1.5×10-11 | 1.5×10-11 | — |
电极固相体积分数εs | — | 0.471 | — | 0.297 | — |
电解质相体积分数εe | — | 0.357 | — | 0.444 | — |
电极颗粒半径rs/μm | — | 14.75 | — | 10 | — |
扭曲布鲁格曼系数Brugl | — | 2.5 | 2.15 | 2.98 | — |
法拉第常数F/(c/mol) | 96485 | — | — | — | — |
摩尔气体常数R/[J/(mol·K)] | 8.314 | — | — | — | — |
参考温度Tref/K | 273.15 | — | — | — | — |
固液界面电阻RSEI/(Ω·m2) | — | 0.001 | — | 0.001 | — |
比表面积a/m-1 | — | 3εs/rs | — | 3εs/rs | — |
有效电解质扩散率Deeff/(m2/s) | — | εe1.5De | De | εe1.5De | — |
固相电导率σs/(S/m) | 5.998×107 | 100 | — | 3.8 | 3.774×107 |
液相电导率σe/(S/m) | — | — | σe=f(ce,T)[ | — | — |
有效固相电导率σseff/(S/m) | — | εs1.5σs | σs | εs1.5σs | — |
有效液相电导率σeeff/(S/m) | — | εe1.5σe | σe | εe1.5σe | — |
1 | YONG J Y, RAMACHANDARAMURTHY V K, TAN K M, et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 365-385. DOI: 10.1016/j.rser.2015.04.130. |
2 | CRABTREE G. The coming electric vehicle transformation[J]. Science, 2019, 366(6464): 422-424. DOI: 10.1126/science.aax0704. |
3 | KUMAR R R, ALOK K. Adoption of electric vehicle: A literature review and prospects for sustainability[J]. Journal of Cleaner Production, 2020, 253: 119911. DOI: 10.1016/j.jclepro.2019. 119911. |
4 | REDDY M V, MAUGER A, JULIEN C M, et al. Brief history of early lithium-battery development[J]. Materials, 2020, 13(8): 1884. DOI: 10.3390/ma13081884. |
5 | ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161. DOI: 10.1002/aenm. 201900161. |
6 | KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. DOI: 10.1039/c8ta10513h. |
7 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. DOI: 10. 1016/j.joule.2020.02.010. |
8 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002. |
9 | FENG X, HE X, LU L, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society, 2018, 165(2): A155-A167. DOI: 10.1149/2.0501802jes. |
10 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. DOI: 10.1016/j.ensm.2020.10.020. |
11 | LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy, 2023, 263: 126027. DOI: 10.1016/j.energy.2022.126027. |
12 | LAI X, JIN C Y, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives[J]. Energy Storage Materials, 2021, 35: 470-499. DOI: 10.1016/j.ensm.2020.11.026. |
13 | LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. DOI: 10.1149/1945-7111/aba96f. |
14 | HUANG S, DU X N, RICHTER M, et al. Understanding Li-ion cell internal short circuit and thermal runaway through small, slow and in situ sensing nail penetration[J]. Journal of the Electrochemical Society, 2020, 167(9): 090526. DOI: 10.1149/1945-7111/ab8878. |
15 | SUN F, MORONI R, DONG K, et al. Study of the mechanisms of internal short circuit in a Li/Li cell by synchrotron X-ray phase contrast tomography[J]. ACS Energy Letters, 2017, 2(1): 94-104. DOI: 10.1021/acsenergylett.6b00589. |
16 | ROSSO M, GOBRON T, BRISSOT C, et al. Onset of dendritic growth in lithium/polymer cells[J]. Journal of Power Sources, 2001, 97: 804-806. DOI: 10.1016/S0378-7753(01)00734-0. |
17 | RAMADASS P, FANG W F, ZHANG Z M. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique[J]. Journal of Power Sources, 2014, 248: 769-776. DOI: 10.1016/j.jpowsour.2013.09.145. |
18 | ZHAO W, LUO G, WANG C Y. Modeling nail penetration process in large-format Li-ion cells[J]. Journal of the Electrochemical Society, 2014, 162(1): A207-A217. DOI: 10.1149/2.1071501jes. |
19 | HUANG L L, LIU L S, LU L G, et al. A review of the internal short circuit mechanism in lithium-ion batteries: Inducement, detection and prevention[J]. International Journal of Energy Research, 2021, 45(11): 15797-15831. DOI: 10.1002/er.6920. |
20 | LIU L S, FENG X N, RAHE C, et al. Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 61: 269-280. DOI: 10.1016/j.jechem.2021.03.025. |
21 | WANG L B, LI J P, CHEN J Y, et al. Revealing the internal short circuit mechanisms in lithium-ion batteries upon dynamic loading based on multiphysics simulation[J]. Applied Energy, 2023, 351: 121790. DOI: 10.1016/j.apenergy.2023.121790. |
22 | CHEN M B, BAI F F, LIN S L, et al. Performance and safety protection of internal short circuit in lithium-ion battery based on a multilayer electro-thermal coupling model[J]. Applied Thermal Engineering, 2019, 146: 775-784. DOI: 10.1016/j.applthermaleng. 2018.10.011. |
23 | LI Y B, ZHOU Z F, WU W T. Three-dimensional thermal modeling of internal shorting process in a 20Ah lithium-ion polymer battery[J]. Energies, 2020, 13(4): 1013. DOI: 10.3390/en13041013. |
24 | OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. DOI: 10.1016/j.jpowsour.2015.06.087. |
25 | HU X S, LI S B, PENG H E. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-67. DOI:10.1016/j.jpowsour.2011.10.013 |
26 | DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890. DOI: 10.1149/1.1836921. |
27 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. DOI: 10.1149/1.2221597. |
28 | WANG N, CHEN A L, ZHAO W Y, et al. An online temperature estimation for cylindrical lithium-ion batteries based on simplified distribution electrical-thermal model[J]. Journal of Energy Storage, 2022, 55: 105326. DOI: 10.1016/j.est.2022.105326. |
29 | ALKHEDHER M, AL TAHHAN A B, YOUSAF J, et al. Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111172. DOI: 10.1016/j.est.2024.111172. |
30 | XING B B, XIAO F Y, KOROGI Y, et al. Direction-dependent mechanical-electrical-thermal responses of large-format prismatic Li-ion battery under mechanical abuse[J]. Journal of Energy Storage, 2021, 43: 103270. DOI: 10.1016/j.est.2021.103270. |
31 | KONG X D, PLETT G L, SCOTT TRIMBOLI M, et al. Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells[J]. Journal of Energy Storage, 2020, 27: 101085. DOI: 10.1016/j.est.2019.101085. |
32 | FANG W F, RAMADASS P, ZHANG Z M. Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model[J]. Journal of Power Sources, 2014, 248: 1090-1098. DOI: 10.1016/j.jpowsour.2013.10.004. |
33 | LIU C Y, LI H, KONG X B, et al. Modeling analysis of the effect of battery design on internal short circuit hazard in LiNi0. 8Co0. 1Mn0. 1O2/SiOx-graphite lithium ion batteries[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119590. DOI: 10.1016/j.ijheatmasstransfer.2020.119590. |
34 | ZAVALIS T G, BEHM M, LINDBERGH G. Investigation of short-circuit scenarios in a lithium-ion battery cell[J]. Journal of the Electrochemical Society, 2012, 159(6): A848-A859. DOI: 10.1149/2.096206jes. |
35 | AN Z, SHAH K, JIA L, et al. Modeling and analysis of thermal runaway in Li-ion cell[J]. Applied Thermal Engineering, 2019, 160: 113960. DOI: 10.1016/j.applthermaleng.2019.113960. |
36 | LIU Y J, XIA Y, ZHOU Q. Effect of low-temperature aging on the safety performance of lithium-ion pouch cells under mechanical abuse condition: A comprehensive experimental investigation[J]. Energy Storage Materials, 2021, 40: 268-281. DOI: 10.1016/j.ensm.2021.05.022. |
37 | ZHOU M Z, HU L L, CHEN S R, et al. Different mechanical-electrochemical coupled failure mechanism and safety evaluation of lithium-ion pouch cells under dynamic and quasi-static mechanical abuse[J]. Journal of Power Sources, 2021, 497: 229897. DOI: 10.1016/j.jpowsour.2021.229897. |
38 | LI Y D, WANG W W, LIN C, et al. A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression[J]. Energy, 2021, 215: 119050. DOI: 10.1016/j.energy.2020.119050. |
39 | VALO̸EN L O, REIMERS J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of the Electrochemical Society, 2005, 152(5): A882. DOI: 10.1149/1.1872737. |
40 | KONG D P, WANG G Q, PING P, et al. Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions[J]. Applied Thermal Engineering, 2021, 189: 116661. DOI: 10.1016/j.applthermaleng. 2021.116661. |
41 | 贾隆舟, 郑莉莉, 王栋, 等. 高镍三元正极材料锂离子电池的热失控分析[J]. 电池, 2022, 52(1): 58-62. DOI: 10.19535/j.1001-1579.2022.01.014. |
JIA L Z, ZHENG L L, WANG D, et al. Analysis of high nickel ternary cathode materials on thermal runaway of Li-ion battery[J]. Dianchi(Battery Bimonthly), 2022, 52(1): 58-62. DOI: 10.19535/j.1001-1579.2022.01.014. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[11] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[12] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[14] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[15] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||