Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 203-218.doi: 10.19799/j.cnki.2095-4239.2024.0606
• Energy Storage System and Engineering • Previous Articles Next Articles
Bin XU1,2,3(), Yangli ZHU1,2,4(
), Xing WANG1,2, Jun XIONG1,5, Xianchao PAN1,2,3, Yujie XU1,2, Haisheng CHEN1,2,3
Received:
2024-07-03
Revised:
2024-08-08
Online:
2025-01-28
Published:
2025-02-25
Contact:
Yangli ZHU
E-mail:xubin22@mails.ucas.ac.cn;zhuyangli@iet.cn
CLC Number:
Bin XU, Yangli ZHU, Xing WANG, Jun XIONG, Xianchao PAN, Yujie XU, Haisheng CHEN. Research on circumferential nonuniform distribution of axial turbine guide vanes with radial chamber[J]. Energy Storage Science and Technology, 2025, 14(1): 203-218.
1 | YANG Z W, WANG Z, RAN P, et al. Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power[J]. Applied Thermal Engineering, 2014, 66(1/2): 519-527. DOI: 10.1016/j.applthermaleng.2014.02.043. |
2 | ZAFIRAKIS D, CHALVATZIS K J, BAIOCCHI G, et al. Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy[J]. Applied Energy, 2013, 105: 138-154. DOI: 10.1016/j.apenergy. 2012.11.073. |
3 | 陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441. | |
4 | CHEN J, LIU W, JIANG D Y, et al. Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China[J]. Energy, 2017, 127: 462-478. DOI: 10.1016/j.energy.2017.03.088. |
5 | ZHANG X J, LI Y, GAO Z Y, et al. Overview of dynamic operation strategies for advanced compressed air energy storage[J]. Journal of Energy Storage, 2023, 66: 107408. DOI: 10.1016/j.est.2023.107408. |
6 | ALAMI A H, AOKAL K, ABED J, et al. Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications[J]. Renewable Energy, 2017, 106: 201-211. DOI: 10.1016/j.renene.2017.01.002. |
7 | 王星, 李文, 朱阳历, 等. CAES轴流涡轮弯导叶优化设计与流动损失控制机理[J]. 储能科学与技术, 2021, 10(5): 1524-1535. DOI: 10.19799/j.cnki.2095-4239.2021.0338. |
WANG X, LI W, ZHU Y L, et al. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine[J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. DOI: 10.19799/j.cnki.2095-4239.2021.0338. | |
8 | WANG X, ZHU Y L, LI W, et al. Flow characteristics of an axial turbine with chamber and diffuser adopted in compressed air energy storage system[J]. Energy Reports, 2020, 6: 45-57. DOI: 10.1016/j.egyr.2019.12.012. |
9 | KOCH J M, CHOW P N, HUTCHINSON B R, et al. Experimental and computational study of a radial compressor inlet[C]// ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. ASME. DOI: 10.1115/95-GT-082. |
10 | 王锐, 祁大同, 王学军, 等. 离心压缩机径向吸气室内部流动的数值研究[J]. 流体机械, 2008, 36(6): 19-24, 9. DOI: 10.3969/j.issn.1005-0329.2008.06.005. |
WANG R, QI D T, WANG X J, et al. Numerical study on the interior flow in the radial inlet volute for centrifugal compressor[J]. Fluid Machinery, 2008, 36(6): 19-24, 9. DOI: 10.3969/j.issn.1005-0329.2008.06.005. | |
11 | TAN J J, QI D T, WANG R. The effects of radial inlet on the performance of variable inlet guide vanes in a centrifugal compressor stage[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASME, 2010: 1723-1732. DOI: 10.1115/GT2010-22177. |
12 | HAN F H, TAN J J, MAO Y J, et al. Effects of flow loss and inlet distortions caused by radial inlet on the performance of centrifugal compressor stage[C]// ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. ASME, 2016. DOI: 10.1115/AJKFluids2015-09693. |
13 | ANADA S, KAWAKAMI T, SHIBATA N. Development of SJ (swirl jet) turbocharger for diesel engine vehicles[C]// SAE Technical Paper Series. United States: SAE International, 1997: 490-497. DOI: 10.4271/970341. |
14 | PEAT K S, TORREGROSA A J, BROATCH A, et al. An investigation into the passive acoustic effect of the turbine in an automotive turbocharger[J]. Journal of Sound and Vibration, 2006, 295(1/2): 60-75. DOI: 10.1016/j.jsv.2005.11.033. |
15 | PAZZI S, MICHELASSI V. Analysis and design outlines of centrifugal compressor inlet volutes[C]// ASME Turbo Expo 2000: Power for Land, Sea, and Air. ASME, 2014. DOI: 10.1115/2000-GT-0464. |
16 | AGARWAL V K, AJAY PAUL J. Optimization of piston and ringpack design to improve the performance and emission characteristics of a gasoline engine[C]// SAE Technical Paper Series. United States: SAE International, 2013. DOI: 10.4271/2013-01-2809. |
17 | KIM Y, KOCH J. Design and numerical investigation of advanced radial inlet for a centrifugal compressor stage[C]// Process Industries. ASME, 2004, 47179: 127-139.DOI: 10.1115/imece2004-60538. |
18 | 张立楠, 李宏磊, 岳国强, 等. 涡轮增压器进/排气蜗壳结构优化与性能分析[J]. 内燃机工程, 2021, 42(4): 38-46, 53. DOI: 10.13949/j.cnki.nrjgc.2021.04.006. |
ZHANG L N, LI H L, YUE G Q, et al. Structural optimization and performance analysis of intake and exhaust volutes of a turbocharger[J]. Chinese Internal Combustion Engine Engineering, 2021, 42(4): 38-46, 53. DOI: 10.13949/j.cnki.nrjgc. 2021.04.006. | |
19 | LOWSON M V. Reduction of compressor noise radiation[J]. The Journal of the Acoustical Society of America, 1968, 43(1): 37-50. DOI: 10.1121/1.1910760. |
20 | MELLIN R C, SOVRAN G. Controlling the tonal characteristics of the aerodynamic noise generated by fan rotors[J]. Journal of Basic Engineering, 1970, 92(1): 143-154. DOI: 10.1115/1. 3424923. |
21 | DUNCAN P E, DAWSON B. Reduction of interaction tones from axial flow fans by non-uniform distribution of the stator vanes[J]. Journal of Sound and Vibration, 1975, 38(3): 357-371. DOI: 10.1016/S0022-460X(75)80052-6. |
22 | FIAGBEDZI Y A. Reduction of blade passage tone by angle modulation[J]. Journal of Sound and Vibration, 1982, 82(1): 119-129. DOI: 10.1016/0022-460X(82)90547-8. |
23 | BOLTEZAR M, MESARIC M, KUHELJ A. The influence of uneven blade spacing on the SPL and noise spectra radiated from radial fans[J]. Journal of Sound and Vibration, 1998, 216(4): 697-711. DOI: 10.1006/jsvi.1998.1707. |
24 | JIANG B Y, WANG J, YANG X P, et al. Tonal noise reduction by unevenly spaced blades in a forward-curved-blades centrifugal fan[J]. Applied Acoustics, 2019, 146: 172-183. DOI: 10.1016/j.apacoust.2018.11.007. |
25 | WU Y D, PAN D H, PENG Z G, et al. Blade force model for calculating the axial noise of fans with unevenly spaced blades[J]. Applied Acoustics, 2019, 146: 429-436. DOI: 10.1016/j.apacoust. 2018.11.008. |
26 | CATTANEI A, MAZZOCUT ZECCHIN F, DI PASQUALI A, et al. Effect of the uneven blade spacing on the noise annoyance of axial-flow fans and side channel blowers[J]. Applied Acoustics, 2021, 177: 107924. DOI: 10.1016/j.apacoust.2021.107924. |
27 | 何江南, 廖明夫, 刘前智. 非均匀栅距对压气机转子-静子气动干涉噪声的影响[J]. 科学技术与工程, 2007, 7(11): 2581-2583, 2624. DOI: 10.3969/j.issn.1671-1815.2007.11.028. |
HE J N, LIAO M F, LIU Q Z. Effects of uneven blade spacing on rotor-stator interaction noise in an axial compressor[J]. Science Technology and Engineering, 2007, 7(11): 2581-2583, 2624. DOI: 10.3969/j.issn.1671-1815.2007.11.028. | |
28 | 邢世凯. 非均匀布置可调导叶向心涡轮性能研究[D]. 北京: 北京理工大学, 2015. |
XING S K. Research on the performance of centripetal turbine with non-uniform arrangement of adjustable guide vanes [D]. Beijing: Beijing Institute of Technology, 2015. | |
29 | MONK D J, KEY N L, FULAYTER R D. Reduction of aerodynamic forcing through introduction of stator asymmetry in axial compressors[J]. Journal of Propulsion and Power, 2016, 32(1): 134-141. DOI: 10.2514/1.b35704. |
30 | 郑赟, 崔健, 高庆哲, 等. 导叶非均匀布局对气动激励的影响[J]. 航空动力学报, 2022, 37(11): 2627-2635. DOI: 10.13224/j.cnki.jasp.20220292. |
ZHENG Y, CUI J, GAO Q Z, et al. Effects of inlet guide vanes asymmetry layouts on aerodynamic excitation[J]. Journal of Aerospace Power, 2022, 37(11): 2627-2635. DOI: 10.13224/j.cnki.jasp.20220292. | |
31 | GUO H, XU Y J, ZHANG Y, et al. Off-design performance and operation strategy of expansion process in compressed air energy systems[J]. International Journal of Energy Research, 2019, 43(1): 475-490. DOI: 10.1002/er.4284. |
32 | MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55. DOI: 10.2307/1271432. |
[1] | Pengyu LI, Xipeng LIN, Liang WANG, Haisheng CHEN, Yifei WANG. Study on supercritical nitrogen flow and heat transfer characteristics in a vertical corrugated channel [J]. Energy Storage Science and Technology, 2024, 13(8): 2605-2614. |
[2] | Wenxin HAN, Xuehui ZHANG, Jian XU, Xin JIANG, Lihong FU, Wenbin GUO, Haisheng CHEN. Research progress on flow and control of compressor tip clearance [J]. Energy Storage Science and Technology, 2024, 13(6): 1940-1962. |
[3] | Zuogang GUO, Tong LIU, Min XU, Shen XU, Guangming CHEN, Xinyue HAO. Theoretical analysis of a novel ejector augmented compressed air energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1877-1887. |
[4] | Yang LI. Mathematical model of thermodynamic improvement of compressed air storage gas storage [J]. Energy Storage Science and Technology, 2024, 13(5): 1707-1709. |
[5] | Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat [J]. Energy Storage Science and Technology, 2024, 13(2): 611-622. |
[6] | Hongpeng HE, Xiaoyu WANG, Meijiao XU, Chenglong MA, Wei ZHANG, Li ZHANG. Reliability and economic evaluation of compressed air energy storage in wind power generation systems with transmission constraints [J]. Energy Storage Science and Technology, 2024, 13(11): 4226-4234. |
[7] | Xiangcheng MENG. Optimization of civil engineering building structure design for large scale compressed air energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(10): 3579-3581. |
[8] | Wenhui LI, Yonghan JIAO, Ge GUO, Jiajun LI, Jianqiang DENG. Research on improving cooling performance of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(9): 2833-2841. |
[9] | Xiaoxia SUN, Zhonghua GUI, Ziyu GAO, Bingqian ZHOU, Xia LIU, Xinjing ZHANG, Huan GUO, Wen LI, Yong SHENG, Yangli ZHU, Jian ZHOU, Yujie XU. Dynamic characteristics of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1840-1853. |
[10] | Yonghong XU, Yuting WU, Hongguang ZHANG, Fubin YANG, Yan WANG. Experimental study on a micro-compressed air energy storage system based on a pneumatic motor [J]. Energy Storage Science and Technology, 2023, 12(6): 1854-1861. |
[11] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[12] | Qihui YU, Zhigang WEI, Guoxin SUN, Liang LU. Experimental and performance study of spray heat transfer-based compressed air quasi-isothermal expansion system [J]. Energy Storage Science and Technology, 2023, 12(3): 878-888. |
[13] | Hang YIN, Qiang WANG, Jiahua ZHU, Zhirong LIAO, Zinan ZHANG, Ershu XU, Chao XU. Thermodynamic analysis of an advanced adiabatic compressed-air energy storage system coupled with molten salt heat and storage-organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(12): 3749-3760. |
[14] | Kaixuan WANG, Zhitao ZUO, Qi LIANG, Wenbin GUO, Haisheng CHEN. Performance prediction methods for centrifugal compressors: A review [J]. Energy Storage Science and Technology, 2023, 12(11): 3435-3444. |
[15] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||