Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 3160-3169.doi: 10.19799/j.cnki.2095-4239.2025.0047
• Energy Storage System and Engineering • Previous Articles
Xiaolan WU1(), Yongzhi YANG1, Zhifeng BAI1, Haichang GUO1, Guifang GUO2, Jinhua ZHANG1
Received:
2025-01-10
Revised:
2025-01-22
Online:
2025-08-28
Published:
2025-08-18
Contact:
Xiaolan WU
E-mail:wuxiaolan@xauat.edu.cn
CLC Number:
Xiaolan WU, Yongzhi YANG, Zhifeng BAI, Haichang GUO, Guifang GUO, Jinhua ZHANG. SOC-balancing droop control strategy using secondary voltage compensation for distributed energy storage units in islanded DC microgrids[J]. Energy Storage Science and Technology, 2025, 14(8): 3160-3169.
[1] | HUANG Z L, LI Y, CHENG X, et al. A voltage-shifting-based state-of-charge balancing control for distributed energy storage systems in islanded DC microgrids[J]. Journal of Energy Storage, 2023, 69: 107861. DOI: 10.1016/j.est.2023.107861. |
[2] | 桑勇. 光储孤岛直流微电网稳定性分析及其控制方法研究[D]. 长沙: 湖南大学, 2023. DOI: 10.27135/d.cnki.ghudu.2023.002312. |
SANG Y. Stability analysis and control method of DC microgrid with optical storage island[D]. Changsha: Hunan University, 2023. DOI: 10.27135/d.cnki.ghudu.2023.002312. | |
[3] | XU D Z, XU A J, YANG C S, et al. A novel double-quadrant SoC consistent adaptive droop control in DC microgrids[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(10): 2034-2038. DOI: 10.1109/TCSII.2019.2945009. |
[4] | 张景明, 仇成, 王骏, 等. 孤岛直流微电网分布式储能单元荷电状态均衡控制策略[J/OL]. 控制工程, 2024: 1-11. (2024-12-05). https://link.cnki.net/doi/10.14107/j.cnki.kzgc.20240773. |
ZHANG J M, QIU C, WANG J, et al. State of charge balancing control strategy for distributed energy storage units in islanded DC microgrids[J/OL]. Control Engineering of China, 2024: 1-11. (2024-12-05). https://link.cnki.net/doi/10.14107/j.cnki.kzgc. 20240773. | |
[5] | SU M, ZHANG K Z, SUN Y, et al. Coordinated control for PV-ESS islanded microgrid without communication[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107699. DOI: 10. 1016/j.ijepes.2021.107699. |
[6] | NABATIRAD M, RAZZAGHI R, BAHRANI B. Decentralized energy management and voltage regulation in islanded DC microgrids[J]. IEEE Systems Journal, 2022, 16(4): 5835-5844. DOI: 10.1109/JSYST.2022.3190279. |
[7] | 魏茂华, 杨苓, 翁亮涛, 等. 考虑容量差异的孤岛直流微网分布式储能单元SOC均衡策略[J]. 上海交通大学学报, 2025, 59(3): 376-387. DOI: 10.16183/j.cnki.jsjtu.2023.271. |
WEI M H, YANG L, WENG L T, et al. SOC balancing strategy for distributed energy storage units in isolated DC microgrids considering capacity differences[J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 376-387. DOI: 10.16183/j.cnki.jsjtu. 2023.271. | |
[8] | KHODADOOST ARANI A A, GHAREHPETIAN G B, ABEDI M. Review on energy storage systems control methods in microgrids[J]. International Journal of Electrical Power & Energy Systems, 2019, 107: 745-757. DOI: 10.1016/j.ijepes.2018.12.040. |
[9] | HOANG K D, LEE H H. Accurate power sharing with balanced battery state of charge in distributed DC microgrid[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 1883-1893. DOI: 10.1109/TIE.2018.2838107. |
[10] | MOYA A P, PAZMIÑO P J, LLANOS J R, et al. Distributed secondary control for battery management in a DC microgrid[J]. Energies, 2022, 15(22): 8769. DOI: 10.3390/en15228769. |
[11] | SU J L, LI K, XING C, et al. A simplified consensus-based distributed secondary control for battery energy storage systems in DC microgrids[J]. International Journal of Electrical Power & Energy Systems, 2024, 155: 109627. DOI: 10.1016/j.ijepes. 2023. 109627. |
[12] | LI B X, YU C, LU X Q, et al. A novel adaptive droop control strategy for SoC balance in PV-based DC microgrids[J]. ISA Transactions, 2023, 141: 351-364. DOI: 10.1016/j.isatra. 2023. 07.008. |
[13] | VAISHNAV V, SHARMA D, JAIN A. Quadratic-droop-based distributed secondary control of microgrid with detail-balanced communication topology[J]. IEEE Systems Journal, 2023, 17(3): 3401-3412. DOI: 10.1109/JSYST.2023.3240171. |
[14] | LASABI O, SWANSON A, JARVIS L, et al. Coordinated hybrid approach based on firefly algorithm and particle swarm optimization for distributed secondary control and stability analysis of direct current microgrids[J]. Sustainability, 2024, 16(3): 1204. DOI: 10.3390/su16031204. |
[15] | FERAHTIA S, DJERIOUI A, REZK H, et al. Adaptive droop based control strategy for DC microgrid including multiple batteries energy storage systems[J]. Journal of Energy Storage, 2022, 48: 103983. DOI: 10.1016/j.est.2022.103983. |
[16] | LU X N, SUN K, GUERRERO J M, et al. State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2804-2815. DOI: 10.1109/TIE. 2013.2279374. |
[17] | MORADI M, HEYDARI M, ZAREI S F, et al. Discrete-Time distributed secondary control of DC microgrids with communication delays[J]. Electric Power Systems Research, 2024, 226: 109935. DOI: 10.1016/j.epsr.2023.109935. |
[18] | ALAM M S, AL-ISMAIL F S, AL-SULAIMAN F A, et al. Energy management in DC microgrid with an efficient voltage compensation mechanism[J]. Electric Power Systems Research, 2023, 214: 108842. DOI: 10.1016/j.epsr.2022.108842. |
[19] | ZHANG W L, ZHANG H, ZHI N. Energy management optimization strategy of DC microgrid based on consistency algorithm considering generation economy[J]. Energy Reports, 2023, 9: 683-691. DOI: 10.1016/j.egyr.2023.03.060. |
[1] | Qian MA, Liang XIAO, Bing CHENG, Qin GAO, Chunxiao LIU, Yihua ZHU, Chengxiang LI. Cooperative primary frequency modulation control method for distributed energy storage based on reinforcement learning-model predictive control [J]. Energy Storage Science and Technology, 2025, 14(8): 3138-3148. |
[2] | Zitao WANG, Haoran LI. Frequency control method for power restoration in distribution networks considering distributed energy storage power support [J]. Energy Storage Science and Technology, 2025, 14(7): 2738-2751. |
[3] | Haoyuan MA, Yan WU, Tong WANG, Jinyang HU, Jia LI, Yuqi HUANG. State of charge estimation of lithium iron phosphate batteries based on force-electric-temperature signals and a CNN-BiLSTM model [J]. Energy Storage Science and Technology, 2025, 14(7): 2865-2874. |
[4] | Haoran LI, Zitao WANG. Active control method for power restoration in distribution networks considering the characteristics of distributed energy storage SOC [J]. Energy Storage Science and Technology, 2025, 14(7): 2833-2843. |
[5] | Huimin FAN, Haohong PENG, Hui MENG, Menghong TANG, Haohao YI, Jing DING, Jincheng LIU, Chengshan XU, Xuning FENG. Research and simulation analysis of swelling force characteristics in energy storage battery modules [J]. Energy Storage Science and Technology, 2025, 14(6): 2488-2497. |
[6] | Haifei SONG, Lehong WANG, Yidong YUAN, Tianting ZHAO, Jie CHEN. Battery sampling voltage filtering and estimation based on improved Kalman filter algorithm [J]. Energy Storage Science and Technology, 2025, 14(5): 2106-2113. |
[7] | Honghui WANG, Jiaxin LI, Deren CHU, Yanyi LI, Ting XU. Study on the electrochemical performance failure mechanisms and thermal safety of lithium iron phosphate battery during storage conditions [J]. Energy Storage Science and Technology, 2025, 14(5): 1797-1805. |
[8] | Zhen YAN, Qiang LIU, Huibin LI, Jun ZHANG, Yahui JIANG. Power optimization management method for photovoltaic microgrids based on the state of charge of hybrid energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2067-2077. |
[9] | Tao WANG, Tian MAO, Baorong ZHOU, Wenmeng ZHAO, Hao HUA. Exploration of virtual synchronous machine control based on energy storage state of charge [J]. Energy Storage Science and Technology, 2025, 14(5): 2032-2034. |
[10] | Wenqi DONG, Donghui ZHANG, Yifan CAO, Zhaoxuan NING, Xinjian JIANG, Ming LI, Xuewei SHI. The control strategies concerning the new type inertia flywheel and high-speed flywheel involved in the grid inertia response and primary frequency modulation [J]. Energy Storage Science and Technology, 2025, 14(3): 1224-1233. |
[11] | Juan PANG, Jinling SUN. Discussion on the application and economic benefits of distributed energy storage systems on the basis of energy interconnection [J]. Energy Storage Science and Technology, 2025, 14(2): 868-870. |
[12] | Ye TIAN, Shanshan WANG, Xu YAO, Jiaxin LIU, Xiaodong HAN. The significance and development of the collaborative application of distribution network communication and distributed energy storage technology [J]. Energy Storage Science and Technology, 2025, 14(1): 190-192. |
[13] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[14] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[15] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||