Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3330-3339.doi: 10.19799/j.cnki.2095-4239.2025.0106
• Energy Storage Materials and Devices • Previous Articles Next Articles
Ying LI1(), Shuli LIU1(
), Yuliang ZOU2, Yihan WANG1, Tingsen CHEN1, Yongliang SHEN3
Received:
2025-02-06
Revised:
2025-03-08
Online:
2025-09-28
Published:
2025-09-05
Contact:
Shuli LIU
E-mail:15733578085@163.com;shuli79@126.com
CLC Number:
Ying LI, Shuli LIU, Yuliang ZOU, Yihan WANG, Tingsen CHEN, Yongliang SHEN. Sensitivity analysis of thermal performance parameters of zeolite-filled thermochemical reactor during energy release[J]. Energy Storage Science and Technology, 2025, 14(9): 3330-3339.
[1] | FARGHALI M, OSMAN A I, MOHAMED I M A, et al. Strategies to save energy in the context of the energy crisis: A review[J]. Environmental Chemistry Letters, 2023, 21(4): 2003-2039. DOI: 10.1007/s10311-023-01591-5. |
[2] | YOUSEF M S, HASSAN H. Assessment of different passive solar stills via exergoeconomic, exergoenvironmental, and exergoenviroeconomic approaches: A comparative study[J]. Solar Energy, 2019, 182: 316-331. DOI: 10.1016/j.solener.2019.02.042. |
[3] | SAID M A, HASSAN H. Effect of using nanoparticles on the performance of thermal energy storage of phase change material coupled with air-conditioning unit[J]. Energy Conversion and Management, 2018, 171: 903-916. DOI: 10.1016/j.enconman. 2018.06.051. |
[4] | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. DOI: 10.1016/j.rser.2014.08.054. |
[5] | DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energy systems[J]. Science, 2018, 360(6396): eaas9793. DOI: 10.1126/science.aas9793. |
[6] | CABEZA L F, SOLÉ A, BARRENECHE C. Review on sorption materials and technologies for heat pumps and thermal energy storage[J]. Renewable Energy, 2017, 110: 3-39. DOI: 10.1016/j.renene.2016.09.059. |
[7] | MA Z W, BAO H S, ROSKILLY A P. Electricity-assisted thermochemical sorption system for seasonal solar energy storage[J]. Energy Conversion and Management, 2020, 209: 112659. DOI: 10.1016/j.enconman.2020.112659. |
[8] | JOHANNES K, KUZNIK F, HUBERT J L, et al. Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings[J]. Applied Energy, 2015, 159: 80-86. DOI: 10.1016/j.apenergy.2015.08.109. |
[9] | GAO S C, WANG S G, HU P Y, et al. Performance of sorption thermal energy storage in zeolite bed reactors: Analytical solution and experiment[J]. Journal of Energy Storage, 2023, 64: 107154. DOI: 10.1016/j.est.2023.107154. |
[10] | SCAPINO L, ZONDAG H A, VAN BAEL J, et al. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1314-1331. DOI: 10.1016/j.rser. 2017.03.101. |
[11] | HAO C S, FENG G S, MA C J, et al. Performance analysis of a novel multi-module columnar packed bed reactor with salt hydrates for thermochemical heat storage[J]. Journal of Energy Storage, 2024, 86: 111170. DOI: 10.1016/j.est.2024.111170. |
[12] | AYDIN D, CASEY S P, CHEN X J, et al. Novel "open-sorption pipe" reactor for solar thermal energy storage[J]. Energy Conversion and Management, 2016, 121: 321-334. DOI: 10.1016/j.enconman.2016.05.045. |
[13] | MITALI J, DHINAKARAN S, MOHAMAD A A. Energy storage systems: A review[J]. Energy Storage and Saving, 2022, 1(3): 166-216. DOI: 10.1016/j.enss.2022.07.002. |
[14] | RANJHA Q, VAHEDI N, OZTEKIN A. High-temperature thermochemical energy storage-heat transfer enhancements within reaction bed[J]. Applied Thermal Engineering, 2019, 163: 114407. DOI: 10.1016/j.applthermaleng.2019.114407. |
[15] | SCIACOVELLI A, GAGLIARDI F, VERDA V. Maximization of performance of a PCM latent heat storage system with innovative fins[J]. Applied Energy, 2015, 137: 707-715. DOI: 10.1016/j.apenergy.2014.07.015. |
[16] | ZHANG C B, LI J, CHEN Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: 114102. DOI: 10.1016/j.apenergy.2019.114102. |
[17] | FOPAH-LELE A, ROHDE C, NEUMANN K, et al. Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger[J]. Energy, 2016, 114: 225-238. DOI: 10.1016/j.energy.2016.08.009. |
[18] | WANG W, SHUAI Y, YANG J Y, et al. Heat transfer and heat storage characteristics of calcium hydroxide/oxide based on shell-tube thermochemical energy storage device[J]. Renewable Energy, 2023, 218: 119364. DOI: 10.1016/j.renene.2023.119364. |
[19] | LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843. DOI: 10.1016/j.enconman.2019.111843. |
[20] | HAN X C, XU H J, XU T, et al. Magnesium-based thermochemical reactor with multiporous structures for medium-temperature solar applications: Transient modelling of discharge capability[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111630. DOI: 10.1016/j.solmat.2022.111630. |
[21] | HAN X C, XU H J, ZHAO C Y. Design and performance evaluation of multi-layered reactor for calcium-based thermochemical heat storage with multi-physics coupling[J]. Renewable Energy, 2022, 195: 1324-1340. DOI: 10.1016/j.renene.2022.06.120. |
[22] | LUO X Y, LI W, WANG Q W, et al. Numerical investigation of a thermal energy storage system based on the serpentine tube reactor[J]. Journal of Energy Storage, 2022, 56: 106071. DOI: 10.1016/j.est.2022.106071. |
[23] | CHEN W, LI W, ZHANG Y S. Analysis of thermal deposition of MgCl2·6H2O hydrated salt in the sieve-plate reactor for heat storage[J]. Applied Thermal Engineering, 2018, 135: 95-108. DOI: 10.1016/j.applthermaleng.2018.02.043. |
[24] | 孙霄龙, 龚海艇, 陈臻, 等. 钙基热化学储热反应器传热传质协同强化及储热特性研究[J]. 储能科学与技术, 2025, 14(3): 1198-1209. DOI: 10.19799/j.cnki.2095-4239.2025.0048. |
SUN X L, GONG H T, CHEN Z, et al. Synergistic enhancement of heat and mass transfer and heat storage characteristics in calcium-based thermochemical heat storage reactors[J]. Energy Storage Science and Technology, 2025, 14(3): 1198-1209. DOI: 10.19799/j.cnki.2095-4239.2025.0048. | |
[25] | KANT K, SHUKLA A, SMEULDERS D M J, et al. Performance analysis of a K2CO3-based thermochemical energy storage system using a honeycomb structured heat exchanger[J]. Journal of Energy Storage, 2021, 38: 102563. DOI: 10.1016/j.est.2021. 102563. |
[26] | RANJHA Q, OZTEKIN A. Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage[J]. Renewable Energy, 2017, 111: 825-835. DOI: 10.1016/j.renene.2017.04.062. |
[27] | RUI J J, LUO Y M, WANG M Q, et al. Design and performance evaluation of an innovative salt hydrates-based reactor for thermochemical energy storage[J]. Journal of Energy Storage, 2022, 55: 105799. DOI: 10.1016/j.est.2022.105799. |
[28] | 马鸿坤, 纪明希, 丁玉龙. 中低温吸附式热化学储热研究现状与进展[J]. 储能科学与技术, 2024, 13(12): 4436-4451. DOI: 10.19799/j.cnki.2095-4239.2024.0909. |
MA H K, JI M X, DING Y L. Current status and advances in the low-to-medium temperature sorption-based thermochemical heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4436-4451. DOI: 10.19799/j.cnki.2095-4239.2024.0909. |
[1] | Chengchen LI, Qinghua YU, Huitao DAI, Na JIA, Lin WANG, Binbo SUN. Numerical study on charging/discharging characteristics of a closed thermochemical reactor based on SrBr2·6H2O [J]. Energy Storage Science and Technology, 2025, 14(9): 3319-3329. |
[2] | Jie CHEN, Hongkun MA, Yulong DING. MgSO4·7H2O for thermochemical energy storage: Hydration/dehydration kinetics and cyclability [J]. Energy Storage Science and Technology, 2024, 13(12): 4259-4271. |
[3] | Mengru WANG, Xirui SUN, Haoyu ZHANG, Jian CHEN, Youshi LI. Investigation on support modification on thermochemical energy storage characteristics of Ca/Cu composites [J]. Energy Storage Science and Technology, 2024, 13(12): 4290-4298. |
[4] | Yang DING, Hanwen WANG, Wenjie LU, Yuanjun LUO, Xiang LING. Characteristics and optimization study of an adiabatic Ca-looping Carnot battery system based on pumped thermal electricity storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4247-4258. |
[5] | Shuyu XU, Yan WANG. Numerical study of thermochemical energy storage characteristics of MgSO4 [J]. Energy Storage Science and Technology, 2024, 13(12): 4299-4309. |
[6] | Chao WU, Luoya WANG, Zijie YUAN, Changlong MA, Jilei YE, Yuping WU, Lili LIU. Research progress in liquid cooling and heat dissipation technologies for electrochemical energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(10): 3596-3612. |
[7] | Zhihao ZHANG, Xiaogang JIN, Hengxing BAO, Xiang LING. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor [J]. Energy Storage Science and Technology, 2023, 12(1): 227-235. |
[8] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[9] | Xiangyu HAN, Liang WANG, Zhiwei GE, Haoshu LING, Xipeng LIN, Haisheng CHEN, Long PENG. The thermal storage and release kinetics of Co3O4/CoO redox reaction [J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708. |
[10] | Yang LI, Xinjing ZHANG, Jianfei SONG, Xiaoyu LI, Huan GUO, Yujie XU, Haisheng CHEN. Dynamic regulation and control of the discharge process in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523. |
[11] | Bowen YANG, Jun YAN, Changying ZHAO. Investigating the performance of a fluidized bed reactor for a magnesium hydroxide thermochemical energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1735-1744. |
[12] | Yimo LUO, Jinjin RUI, Wei XU, Jinqing PENG, Xiaohui SHE, Nianping LI, Yulong DING. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor [J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. |
[13] | YAN Hongli, JING Zhiliang, LU Zuowei, WANG Yuqi, WU Zhen. Study on coupling characteristics of PEMFC power generation system using chemisorption as solid-state hydrogen storage [J]. Energy Storage Science and Technology, 2020, 9(1): 152-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||