Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4112-4122.doi: 10.19799/j.cnki.2095-4239.2025.0320
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhongyun XU(
), Lixia YAN, Yu QIN, Jingxuan GUO
Received:2025-04-01
Revised:2025-05-01
Online:2025-11-28
Published:2025-11-24
Contact:
Zhongyun XU
E-mail:xuzhongyun@ jiangnan.edu.cn
CLC Number:
Zhongyun XU, Lixia YAN, Yu QIN, Jingxuan GUO. Hierarchical porous carbon via non-solvent phase inversion for enhancing electrochemical energy storage[J]. Energy Storage Science and Technology, 2025, 14(11): 4112-4122.
Table 1
The corresponding table of product method and name (● indicates preparation using the non-solvent induced phase inversion method; ◎ indicates preparation using the grinding method)"
| 处理方式 | PC | PC-PZ50 | PC-PZ100 | PC-PZ200 | P-PZ | PC-Z8 | (H)PC-PZ | (G)PC-PZ |
|---|---|---|---|---|---|---|---|---|
| 使用前驱体(含量) | 0 | PZ(50 mg) | PZ(100 mg) | PZ(200 mg) | PZ(100 mg) | PZ(100 mg) | PZ(100 mg) | PZ(100 mg) |
| 是否使用CNT | 是 | 是 | 是 | 是 | 否 | 是 | 是 | 是 |
| 制备方法 | ● | ● | ● | ● | ● | ● | ● | ◎ |
| 浸泡溶液 | 饱和NaCl | 饱和NaCl | 饱和NaCl | 饱和NaCl | 饱和NaCl | 饱和NaCl | 去离子水 | 无 |
Fig. 6
(a-c) Electrochemical performance of PC、PC-PZ50、PC-PZ100 and PC-PZ200: (a) CV curves (50 mV/s); (b) GCD curves (0.1 A/g); (c) the comparison of specific capacitances at 0.1,0.2,0.5,1,5,10,20,30,40,50 A/g; (d-f) Electrochemical performance of (H)PC-PZ、PC-Z8、P-PZ and (G)PC-PZ at the same conditions: (d) CV curves; (e) GCD curves; (f) the comparison of specific capacitances"
Table 2
Comparison of doped element, specific surface area and specific capacitance with previous literature"
| Electrode material | Content of doped elements(at) /% | Specific surface area /(m2/g) | Specific capacitance /(F/g) | Ref. |
|---|---|---|---|---|
| N, P co-doped porous carbon | N-5.42 P-5.35 | 286.5 | 160 (1 A/g) | |
| N, O co-doped carbon nanofibers | N-5.26 O-10.38 | 492.5 | 125.2 (1 A/g) | |
| B, N co-doped carbon nanofibers | N-11.24 B-1.3 | 351.3 | 295 (0.5 A/g) | |
| N, P co-doped carbon aerogel | pyridinic N and pyrrolic N-3.53 | 332.05 | 235 (0.5 A/g) | |
| N, S, co-doped porous carbon | N-12.45 S-4.19 | 473 | 159 (1 A/g) | |
| N, P co-doped carbon | N-5.18 | 461.61 | 227 (1 A/g) | |
| N, co-doped carbon | N-13.93 | 365 | 326 (1 A/g) | |
| PC-PZ100 | N-13.33 | 356.99 | 315.1 (1 A/g) | This work |
Fig. 7
(a) capacitance contribution of PC-PZ100 at 100 mV/s; (b) capacitance contribution of PC-PZ100 at different scan rates; (c) Nyquist plots of PC、PC-PZ50、PC-PZ100、PC-PZ200 and P-PZ (Inset: equivalent circuit used in the fitting); (d) the capacitance retention of PC-PZ100 in three-electrode system;(e)—(f) CV curves and GCD curves of PC-PZ100 in two-electrode system"
| [1] | ANSARI K B, MASHKOOR R, NAIM M A, et al. A critical review on pure and hybrid electrode supercapacitors, economics of HESCs, and future perspectives[J]. Journal of Energy Storage, 2025, 112: 115564. DOI: 10.1016/j.est.2025.115564. |
| [2] | MANFO T A, LAAKSONEN H. A review of carbon-based hybrid materials for supercapacitors[J]. New Carbon Materials, 2025, 40(1): 81-110. DOI: 10.1016/S1872-5805(25)60943-7. |
| [3] | MURALEE GOPI C V V, ALZAHMI S, NARAYANASWAMY V, et al. Supercapacitors: A promising solution for sustainable energy storage and diverse applications[J]. Journal of Energy Storage, 2025, 114: 115729. DOI: 10.1016/j.est.2025.115729. |
| [4] | EL-YAQUB B, WAHID M H, ZAINAL Z, et al. Porous carbon foams supported rGO-ppy// rGO for asymmteric supercapacitor device[J]. Materials Science and Engineering: B, 2025, 317: 118173. DOI: 10.1016/j.mseb.2025.118173. |
| [5] | YAN W J, SUN Z J, DONG K M, et al. Effects of dry and wet torrefaction pretreatment on the physicochemical structure of corn stover-derived porous carbon and its performance in supercapacitor applications[J]. Biomass and Bioenergy, 2025, 197: 107773. DOI: 10.1016/j.biombioe.2025.107773. |
| [6] | ALI Z, ATHIR N, KHAN A M, et al. Function of a hard template to develop O, N, and P codoped carbon from polyphosphazene as supercapacitor cathode[J]. Fuel, 2025, 392: 134963. DOI: 10. 1016/j.fuel.2025.134963. |
| [7] | KAR T, MARTÍNEZ DÍAZ I, CASALES-DÍAZ M, et al. Carbonized zeolitic imidazolate framework-incorporated electrospun polymeric nanofiber composite for supercapacitor applications[J]. Materials Letters, 2025, 379: 137698. DOI: 10.1016/j.matlet. 2024. 137698. |
| [8] | KIM E B, AKHTAR M S, KONG I, et al. Carbonized porous zeolitic imidazolate framework as promising electrode for electrochemical supercapacitors[J]. Electrochimica Acta, 2024, 507: 145110. DOI: 10.1016/j.electacta.2024.145110. |
| [9] | BASHIR J, ILYAS S, et al. Polyelectrolyte multilayer-based nanofiltration membranes with tunable performance for target pollutants[J]. ACS Applied Polymer Materials, 2025, 7(5): 3147-3156. DOI: 10.1021/acsapm.4c03906. |
| [10] | YU M M, PENG Y Y, WANG X Y, et al. Precise controlling microstructure of all-in-one hybrid membrane achieved via Hansen solubility parameters after introducing nonsolvent component toward implantable energy storage device[J]. Macromolecules, 2024, 57(19): 9429-9441. DOI: 10.1021/acs.macromol.4c01201. |
| [11] | HU G D, LAN J, SUN H J, et al. Design and preparation of hierarchical porous carbon-based materials with bionic "ant nest" structure for high performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2023, 968: 172029. DOI: 10. 1016/j.jallcom.2023.172029. |
| [12] | KONG L R, MA Q, XU Z Y, et al. Three-dimensional graphene network deposited with mesoporous nitrogen-doped carbon from non-solvent induced phase inversion for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 558: 21-31. DOI: 10.1016/j.jcis.2019.09.095. |
| [13] | COLAK S G, SIMSEK U B, AYDıN H, et al. Enhanced supercapacitor performance with CZTS-based carbon nanocomposites electrodes: An electrochemical study[J]. Journal of Colloid and Interface Science, 2025, 682: 478-490. DOI: 10. 1016/j.jcis.2024.11.207. |
| [14] | ZHANG K, ZHANG R, WANG Q G, et al. Boosting internal accessibility via 50-nm-diameter channels in NiO@nitrogen-containing carbon for high rate performance and high contribution of electric double layer capacitance[J]. Chemical Engineering Journal, 2025, 506: 159991. DOI: 10.1016/j.cej.2025.159991. |
| [15] | KHALAF M M, ABD EL-LATEEF H M, SHAALAN N M, et al. Ultrasonication-induced functionalization of MWCNTs with ZnSi, ZnNi, and ZnTi bimetallic oxides: Comprehensive structural characterization and electrochemical performance for energy storage application[J]. Journal of Energy Storage, 2025, 112: 115540. DOI: 10.1016/j.est.2025.115540. |
| [16] | ZHANG S Q, CAO W F, XU A Z, et al. Alternating electrodeposition fabrication of graphene-buffered nickel-cobalt layered double hydroxide supercapacitor electrodes with superior rate capability[J]. Journal of Colloid and Interface Science, 2025, 689: 137270. DOI: 10.1016/j.jcis.2025.137270. |
| [17] | QU D Y, SHI H. Studies of activated carbons used in double-layer capacitors[J]. Journal of Power Sources, 1998, 74(1): 99-107. DOI: 10.1016/S0378-7753(98)00038-X. |
| [18] | WANG J J, DONG K M, SUN Z J, et al. Preparation of hierarchically porous graphitic carbon materials from peanut shell via a facile catalytic activation method for supercapacitor applications[J]. Journal of Analytical and Applied Pyrolysis, 2025, 189: 107110. DOI: 10.1016/j.jaap.2025.107110. |
| [19] | STOLLER M D, RUOFF R S. Best practice methods for determining an electrode material's performance for ultracapacitors[J]. Energy & Environmental Science, 2010, 3(9): 1294-1301. DOI: 10.1039/C0EE00074D. |
| [20] | JOMEKIAN A, BAZOOYAR B, BEHBAHANI R M. ZIF-8 modified by Pluronic P123 copolymer with enlarged pores and enhanced textural properties for CO2/CH4 and CO2/N2 separations[J]. Journal of Solid State Chemistry, 2020, 289: 121532. DOI: 10. 1016/j.jssc.2020.121532. |
| [21] | LOBATO-PERALTA D R, OKOLIE J A, ORUGBA H O, et al. Evaluating the impact of pre-carbonization on activated carbon production from animal-origin precursors for supercapacitor electrode applications[J]. Biomass and Bioenergy, 2025, 193: 107574. DOI: 10.1016/j.biombioe.2024.107574. |
| [22] | WANG J J, SUN Z J, DONG K M, et al. Synthesis of porous graphitic carbon electrode materials based on Fe-Ni dual transition metal elements for high-performance supercapacitors[J]. Journal of Power Sources, 2025, 640: 236684. DOI: 10.1016/j.jpowsour.2025.236684. |
| [23] | WANG D M, DONG H, ZHANG D Y, et al. In-situ template-assisted self-activation craft for direct preparing mesoporous-dominated N/S Co-doped hierarchical porous carbon for supercapacitors[J]. International Journal of Biological Macromolecules, 2025, 305: 141361. DOI: 10.1016/j.ijbiomac. 2025.141361. |
| [24] | YI Y J, HU S Q, MA Y Y, et al. An industrial match: Direct synthesis of O, S Co-doped carbon from featured sulfate pulping black liquor via an efficient sulfurization strategy for advanced zinc ion hybrid capacitors[J]. Chemical Engineering Journal, 2025, 509: 161224. DOI: 10.1016/j.cej.2025.161224. |
| [25] | SONG A, LI Y C, ZHU S H, et al. VxOy quantum dot-enhanced nitrogen-sulfur dual-doped hierarchical porous carbon electrodes from waste eggshell membranes for advanced flexible supercapacitors[J]. Journal of Colloid and Interface Science, 2025, 688: 526-539. DOI: 10.1016/j.jcis.2025.02.146. |
| [26] | ZHENG J F, CAO T L, DING B P, et al. Facile synthesis of N, P Co-doped carbon materials derived from corn bract for high-performance symmetric supercapacitors[J]. Journal of Energy Storage, 2025, 110: 115297. DOI: 10.1016/j.est.2025.115297. |
| [27] | AYDıN H, ÜSTÜN B, ŞAHINTÜRK U, et al. Chemical blowing agents for the fabrication of nitrogen and oxygen Co-doped carbon nanofibers: Structural and supercapacitive study[J]. Journal of Power Sources, 2025, 626: 235756. DOI: 10.1016/j.jpowsour.2024.235756. |
| [28] | DAHAL B, MUKHIYA T, OJHA G P, et al. In-built fabrication of MOF assimilated B/N Co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors[J]. Electrochimica Acta, 2019, 301: 209-219. DOI: 10.1016/j.electacta. 2019.01.171. |
| [29] | WANG X, GAO Q, ZHOU Y F, et al. N/P Co-doped cellulose carbon aerogel with enhanced supercapacitance[J]. Materials Chemistry and Physics, 2025, 334: 130458. DOI: 10.1016/j.matchemphys.2025.130458. |
| [30] | NARIMISA S, MOURADZADEGUN A, ZARGAR B, et al. Preparation of N-doped carbon material derived from porous organic polymer as an active center to growth nickel cobalt phosphide for high-performance supercapacitors[J]. Journal of Energy Storage, 2024, 103: 114340. DOI: 10.1016/j.est. 2024. 114340. |
| [31] | CHENG X Y, ZHANG L H, LI L Y, et al. One-step carbonization synthesis of N, S Co-doped carbon materials derived from agricultural waste peanut shells for high-performance symmetric supercapacitors[J]. Chemistry-A European Journal, 2024, 30(69): e202402597. DOI: 10.1002/chem.202402597. |
| [32] | SARAVANAN M, RAMESH K, KIRUTHIGA M, et al. Preparation of N and S heteroatoms doped activated carbon from stalks of Gossypium hirsutum L. flower for high-performance symmetric supercapacitor application[J]. Applied Physics A, 2024, 130(10): 764. DOI: 10.1007/s00339-024-07931-8. |
| [33] | KANG O Y, KIM G H, KIM H C, et al. Facile fabrication of polyacrylonitrile-based carbon nanofibers with multimodal channel using polycaprolactone as sacrificial polymer for boosting ion transfer[J]. Journal of Power Sources, 2025, 639: 236631. DOI: 10.1016/j.jpowsour.2025.236631. |
| [1] | Honghui LIU, Donghui LI, Qifeng QIAN, Lingchao XIAO, Lei XIONG, Zhongguo CHEN. Preparation of vanadium nitride-based electrode materials and their application progress in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 3110-3121. |
| [2] | Yafeng FAN, Zonglin YI, Lijing XIE, Xiaoming LI, Fangyuan SU. Capacitor composition analysis of high-frequency supercapacitors based on first-order RC model [J]. Energy Storage Science and Technology, 2025, 14(8): 2903-2912. |
| [3] | Caiying XU, Yuzhen TANG, Qiuyu LI, Haoyue YANG, Yang CHEN, Hengzhao YANG. Supercapacitor energy storage systems for frequency regulation applications in power systems [J]. Energy Storage Science and Technology, 2025, 14(8): 3078-3089. |
| [4] | Xinkai SU, Lulu ZHAO, Yanqiao CHEN, Chu WANG, Huanjun CHEN, Yi JIN. Review of the research on industrialization and applications of supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 2994-3003. |
| [5] | Rusong YANG, Zhaoxia HOU, Wei LI, Haoran WANG, Xu GAO, Haibo LONG. Preparation of PANI/MnO2/rGO-P ternary composite electrode and its application in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(7): 2791-2800. |
| [6] | Yunpeng ZHAO, Yanfang LI, Xinhao CUI, Haiyan SUN, Yingxue TENG. In situ synthesis of nitrogen-doped graphene for supercapacitor applications [J]. Energy Storage Science and Technology, 2025, 14(6): 2270-2277. |
| [7] | Zhen YAN, Qiang LIU, Huibin LI, Jun ZHANG, Yahui JIANG. Power optimization management method for photovoltaic microgrids based on the state of charge of hybrid energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2067-2077. |
| [8] | Guipei XU, Hao LIU, Jiewen LAI, Yifeng LU, Hui HUANG, Huifang DI, Zhenbing WANG. Research progress on solvent-free electrode technology for supercapacitor and lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1445-1460. |
| [9] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
| [10] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
| [11] | Panchun TANG, Rong YAN, Can ZHANG, Ze SUN. Simulation of air- and liquid-cooled thermal management of stacked automotive supercapacitors [J]. Energy Storage Science and Technology, 2024, 13(2): 483-491. |
| [12] | Zhifeng SONG, Weifeng DUAN, Lei MA. Simulation of power storage power regulation system supported by ultracapacitor technology [J]. Energy Storage Science and Technology, 2024, 13(2): 623-625. |
| [13] | Yuedi WANG, Zhongzhu QIU, Miao WU, Yanyan ZHU, Meng QU. Preparation and electrochemical properties of porous NiMoO4/NiCo2S4 composites [J]. Energy Storage Science and Technology, 2023, 12(4): 1034-1044. |
| [14] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
| [15] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||