Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (7): 2791-2800.doi: 10.19799/j.cnki.2095-4239.2025.0036
• Special Issue on the 13th Energy Storage International Conference and Exhibition • Previous Articles Next Articles
Rusong YANG(), Zhaoxia HOU(
), Wei LI, Haoran WANG, Xu GAO, Haibo LONG
Received:
2025-01-08
Revised:
2025-02-12
Online:
2025-07-28
Published:
2025-07-11
Contact:
Zhaoxia HOU
E-mail:yrs15942221692@163.com;Luckyxia2007@126.com
CLC Number:
Rusong YANG, Zhaoxia HOU, Wei LI, Haoran WANG, Xu GAO, Haibo LONG. Preparation of PANI/MnO2/rGO-P ternary composite electrode and its application in supercapacitors[J]. Energy Storage Science and Technology, 2025, 14(7): 2791-2800.
Fig. 5
(a) Shows the CV curve of PANI/MnO2/rGO-P at 5 mV/s at different reaction lengths, (b) the CV curve of PANI/MnO2/rGO-P30 at different sweeps, (c) the GCD curve of PANI/MnO2/rGO-P at 0.5 A/g prepared at different reaction lengths, (d) the GCD curve of PANI/MnO2/rGO-P75 at different current densities"
Table 2
Specific capacitance, energy density, power density and return path stability of different electrode materials"
样品名称 | 比电容/(F/g) | 能量密度/(Wh/kg) | 功率密度/(kW/kg) | 比电容保持率/% |
---|---|---|---|---|
rGO-P | 265(0.5A/g) | 8.62 | 0.31 | 91.5(5000次循环) |
PANI/MnO2 | 499(0.5A/g) | 15.6 | 0.52 | 74.0(5000次循环) |
PANI/MnO2/rGO-P75 | 635(0.5A/g) | 17.5 | 0.45 | 82.0(5000次循环) |
Table 3
Comparison of electrochemical performance of composite electrode materials"
样品名称 | 合成方法 | 比电容/(F/g) | 比电容保持率/% | 文献来源 |
---|---|---|---|---|
PANI/GN | 原位聚合法 | 468.5(0.1 A/g) | 84.9(0.1 A/g 1000次循环) | [ |
NSGP | 水热法 | 492(1 A/g) | 71.0(1 A/g 1000次循环) | [ |
RGO-PANI | 水热法 | 956(1 A/g单电极) | 73.8(10 A/g 10000次循环) | [ |
GP-P | 界面聚合法 | 135(1 A/g) | 95(2 A/g 10000次循环) | [ |
PANP/RGO | 界面聚合法 | 350(0.5 A/g) | 98.5(0.5 A/g 1000次循环) | [ |
H-RGO-MnO2 | 原位复合法 | 270.6(0.5 A/g) | 96(5 A/g 13000次循环) | [ |
RGO/δ-MnO2 | 螯合法 | 322(1 A/g) | 99.6(5 A/g 1000次循环) | [ |
PANI/MnO2-1 | 原位聚合法 | 2318(0.2 A/g) | 60.81(0.2 A/g 100次循环) | [ |
PANI/MnO2/rGO-P75 | 原位聚合法 | 635(0.5 A/g) | 82.0(1 A/g 5000次循环) | 本文 |
[1] | LIU S Y, YANG J, CHEN P, et al. Flexible electrodes for aqueous hybrid supercapacitors: Recent advances and future prospects[J]. Electrochemical Energy Reviews, 2024, 7(1): 25. DOI: 10. 1007/s41918-024-00222-z. |
[2] | ARIAS-PINEDO O M, LÓPEZ E O, MONJE I E, et al. Cotton pads-derived carbon materials/reduced graphene oxide modified with polypyrrole for electrode of supercapacitors[J]. Journal of Energy Chemistry, 2024, 94: 41-53. DOI: 10.1016/j.jechem. 2024.02.025. |
[3] | WANG D L, LIU N N, CHEN F, et al. Progress and prospects of energy storage technology research: Based on multidimensional comparison[J]. Journal of Energy Storage, 2024, 75: 109710. DOI: 10.1016/j.est.2023.109710. |
[4] | 张万松, 徐彦宾, 王峰, 等. 基于钴配合物所构建的超级电容器电极材料[J]. 化工时刊, 2023, 37(6): 33-36, 108. DOI: 10.16597/j.cnki.issn.1002-154x.2023.06.007. |
ZHANG W S, XU Y B, WANG F, et al. Electrode materials for supercapacitors based on cobalt complexes[J]. Chemical Industry Times, 2023, 37(6): 33-36, 108. DOI: 10.16597/j.cnki.issn.1002-154x.2023.06.007. | |
[5] | 梁华彬, 何明基, 钟新仙, 等. 双表面活性剂软模板制备超级电容器用聚苯胺/碳纳米管复合材料[J]. 功能材料, 2024, 55(10): 10211-10219. |
LIANG H B, HE M J, ZHONG X X, et al. Polyaniline/carbon nanotube composite materials prepared by soft template of double surfactants for supercapacitors[J]. Journal of Functional Materials, 2024, 55(10): 10211-10219. | |
[6] | 张亚飞. 碳纳米材料在超级电容器中的应用[J]. 材料导报, 2023, 37(S2): 37-43. |
ZHANG Y F. Carbon nanomaterials as supercapacitor electrodes[J]. Materials Reports, 2023, 37(S2): 37-43. | |
[7] | CUI S E, JIN D Y. Intercalation of organic molecules in the scaffold of graphene oxide liquid crystal[J]. Abstract of Research Papers at the Academic Conference of the Korean Polymer Society, 2021, 46(1): 112. |
[8] | HU J F, SONG H, SUN M J, et al. Enhanced photoelectrochemcial activity of TiO2 nanoparticles by graphene intercalation[J]. Surfaces and Interfaces, 2024, 54: 105149. DOI: 10.1016/j.surfin.2024.105149. |
[9] | ZHANG W B, SHI M Q, HENG Z X, et al. Soft particles enable fast and selective water transport through graphene oxide membranes[J]. Nano Letters, 2020, 20(10): 7327-7332. DOI: 10.1021/acs.nanolett.0c02724. |
[10] | HU Y, XIE X, SUN C B, et al. Study of the intercalation mechanisms of surfactants with different molecular structures on mildly oxidized graphite[J]. Chinese Journal of Engineering, 2020, 42(1): 84-90. DOI: 10.13374/j.issn2095-9389.2019.06.03.001. |
[11] | ZHAO X L, SUN H J, PENG T J. Changes of structure and functional group of reduction of graphene oxide with p-phenylene diamine[J]. Chemical Journal of Chinese Universities-Chinese, 2016, 37(4): 728-735. DOI: 10.7503/cjcu20150682. |
[12] | 苏香香, 杨蓉, 李兰, 等. 氮掺杂石墨烯的制备及其在化学储能中的研究进展[J]. 应用化学, 2018, 35(2): 137-146. |
SU X X, YANG R, LI L, et al. Research progress of preparation of nitrogen-doped graphene and its application in chemical energy storage[J]. Chinese Journal of Applied Chemistry, 2018, 35(2): 137-146. | |
[13] | 刘新, 毛喜玲, 闫欣雨, 等. 三维孔道NiMn-MOF电极材料制备及电化学性能研究[J]. 储能科学与技术, 2024, 13(2): 361-369. DOI: 10.19799/j.cnki.2095-4239.2023.0545. |
LIU X, MAO X L, YAN X Y, et al. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials[J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. DOI: 10.19799/j.cnki.2095-4239.2023.0545. | |
[14] | 孔妍妍, 张熊, 安亚斌, 等. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. DOI: 10.19799/j.cnki.2095-4239.2024.0050. |
KONG Y Y, ZHANG X, AN Y B, et al. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors[J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. DOI: 10.19799/j.cnki.2095-4239.2024.0050. | |
[15] | CHEN K, TANG X K, JIA B B, et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking[J]. Nature Materials, 2022, 21(10): 1121-1129. DOI: 10.1038/s41563-022-01292-4. |
[16] | ZHANG M Y, SONG Y, YANG D, et al. Redox poly-counterion doped conducting polymers for pseudocapacitive energy storage[J]. Advanced Functional Materials, 2021, 31(1): 2006203. DOI: 10.1002/adfm.202006203. |
[17] | XIA A, ZHAO C P, ZENG X X, et al. Preparation and electrochemical properties of B-doped MnO2[J]. Chinese Journal of Materials Research, 2021, 35(1): 36-44. DOI: 10.11901/1005.3093.2020.149. |
[18] | TANG X N, ZHU S K, NING J, et al. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. New Carbon Materials, 2021, 36(4): 702-710. DOI: 10.1016/S1872-5805(21)60082-3. |
[19] | ZHANG Q Y, ZHAO J, CHEN X Y, et al. Unveiling the energy storage mechanism of MnO2 polymorphs for zinc-manganese dioxide batteries[J]. Advanced Functional Materials, 2024, 34(30): 2306652. DOI: 10.1002/adfm.202306652. |
[20] | CHEN J, YAO B W, LI C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229. DOI: 10.1016/j.carbon.2013.07.055. |
[21] | WANG X L, ZHAO J L, LI Z W, et al. Effects of preparation conditions on the supercapacitor performances of MnO2-PANI/titanium foam composite electrodes[J]. Journal of Nanoparticle Research, 2019, 21(6): 119. DOI: 10.1007/s11051-019-4557-7. |
[22] | 张志秦, 胡跃辉, 张效华, 等. AgNWs-rGO复合透明导电薄膜的制备及其稳定性研究[J]. 陶瓷学报, 2020, 41(1): 47-51. DOI: 10.13957/j.cnki.tcxb.2020.01.007. |
ZHANG Z Q, HU Y H, ZHANG X H, et al. Preparation and stability of AgNWs-rGO composite transparent conductive films[J]. Journal of Ceramics, 2020, 41(1): 47-51. DOI: 10.13957/j.cnki.tcxb.2020.01.007. | |
[23] | 张季, 刘伟, 王慎. 锰氧化物在芘污染土壤修复中的应用研究[J]. 中国锰业, 2022, 40(3): 27-32. DOI: 10.14101/j.cnki.issn.1002-4336.2022.03.005. |
ZHANG J, LIU W, WANG S. An application of manganese oxides in remediation of pyrene contaminated soil[J]. China Manganese Industry, 2022, 40(3): 27-32. DOI: 10.14101/j.cnki.issn.1002-4336.2022.03.005. | |
[24] | 赵洪生, 程广贵, 胡宏伟. 基于导电聚苯胺的离子凝胶柔性驱动器研究[J]. 化工新型材料, 2023, 51(7): 117-120. DOI: 10.19817/j.cnki.issn1006-3536.2023.07.021. |
ZHAO H S, CHENG G G, HU H W. Study on ionogel flexible actuator based on conductive polyaniline[J]. New Chemical Materials, 2023, 51(7): 117-120. DOI: 10.19817/j.cnki.issn1006-3536.2023.07.021. | |
[25] | 王卫, 林思伶, 马珮珮, 等. 聚苯胺/涤棉导电纱的制备及其性能表征[J]. 合成纤维, 2022, 51(7): 50-53. DOI: 10.16090/j.cnki.hcxw.2022.07.009. |
WANG W, LIN S L, MA P P, et al. Preparation and performance characterization of polyaniline/polyester-cotton conductive yarn[J]. Synthetic Fiber in China, 2022, 51(7): 50-53. DOI: 10.16090/j.cnki.hcxw.2022.07.009. | |
[26] | FENG Z. Ultra-flexible halloysite/polyaniline composite electrode basedon graphene electrode[J]. Energy Storage Science and Technology, 2023, 12(6): 1794-1803. |
[27] | 王华, 宋航. 铝表面聚苯胺的电化学合成与性能研究[J]. 表面技术, 2016, 45(4): 46-52. DOI: 10.16490/j.cnki.issn.1001-3660. 2016.04.008. |
WANG H, SONG H. Electrochemical synthesis and properties of polyaniline on aluminum surface[J]. Surface Technology, 2016, 45(4): 46-52. DOI: 10.16490/j.cnki.issn.1001-3660.2016.04.008. | |
[28] | ZHOU T T, WU B, DENG C, et al. Preparations and properties of manganese oxide and polyaniline-carbon composite electrode[J]. Journal of Electrochemistry, 2018, 106(2): 38-43. |
[29] | 李丹. 羟基取代醌类化合物氧化还原机理的研究——现场红外光谱电化学法[D]. 合肥: 安徽大学, 2014. |
LI D. Study on the redox mechanism of hydroxyquinones by in situ FT-IR spectroelectrochemistry[D]. Hefei: Anhui University, 2014. | |
[30] | 李子庆, 赫文秀, 张永强, 等. 不同氮源对掺氮石墨烯的结构和性能的影响[J]. 材料研究学报, 2018, 32(8): 616-624. |
LI Z Q, HE W X, ZHANG Y Q, et al. Effect of different nitrogen sources on structure and properties of nitrogen-doped graphene[J]. Chinese Journal of Materials Research, 2018, 32(8): 616-624. | |
[31] | 马丽丽. 聚苯胺掺杂的研究与发展[J]. 山东化工, 2017, 46(1): 56-58. DOI: 10.19319/j.cnki.issn.1008-021x.2017.01.018. |
MA L L. Research and development of polyaniline doped[J]. Shandong Chemical Industry, 2017, 46(1): 56-58. DOI: 10.19319/j.cnki.issn.1008-021x.2017.01.018. | |
[32] | LV H P, YUAN Y, XU Q J, et al. Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor[J]. Journal of Power Sources, 2018, 398: 167-174. DOI: 10.1016/j.jpowsour.2018.07.059. |
[33] | WANG H Y, DENG J, XU C M, et al. Ultramicroporous carbon cloth for flexible energy storage with high areal capacitance[J]. Energy Storage Materials, 2017, 7: 216-221. DOI: 10.1016/j.ensm.2017.03.002. |
[34] | SUN P, YI H, PENG T Q, et al. Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance[J]. Journal of Power Sources, 2017, 341: 27-35. DOI: 10.1016/j.jpowsour.2016.11.112. |
[35] | DANG S, WEN Y X, QIN T F, et al. Nanostructured manganese dioxide with adjustable Mn3+/Mn4+ ratio for flexible high-energy quasi-solid supercapacitors[J]. Chemical Engineering Journal, 2020, 396: 125342. DOI: 10.1016/j.cej.2020.125342. |
[36] | ZHANG Q E, ZHOU A A, WANG J J, et al. Degradation-induced capacitance: A new insight into the superior capacitive performance of polyaniline/graphene composites[J]. Energy & Environmental Science, 2017, 10(11): 2372-2382. DOI: 10.1039/C7EE02018J. |
[37] | ZHANG H M, QIU J Y, PANG J, et al. Sub-millisecond lithiothermal synthesis of graphitic meso–microporous carbon[J]. Nature Communications, 2024, 15: 3491. DOI: 10.1038/s41467-024-47916-y. |
[38] | 万晓娜, 张龙, 刘富强, 等. 一步法制备氧化石墨烯/聚苯胺/Au复合材料及电化学性能[J]. 功能材料, 2019, 50(2): 2156-2160, 2166. |
WAN X N, ZHANG L, LIU F Q, et al. One-step preparation of graphene oxide/polyaniline/Au composites and electrochemical properties[J]. Journal of Functional Materials, 2019, 50(2): 2156-2160, 2166. | |
[39] | 赵佐华, 黄寒星, 王红强, 等. 高性能聚苯胺/石墨烯复合材料的制备及在超级电容器中的应用[J]. 化工新型材料, 2013, 41(5): 163-165. |
ZHAO Z H, HUANG H X, WANG H Q, et al. Preparation and application of PANI/graphene composite materials with high performance for supercapacitor[J]. New Chemical Materials, 2013, 41(5): 163-165. | |
[40] | 梁华彬. 改性石墨烯在聚苯胺超级电容器中的应用[D]. 桂林: 广西师范大学, 2023. DOI: 10.27036/d.cnki.ggxsu.2023.000606. |
LIANG H B. Application of modified graphene in polyaniline supercapacitor[D]. Guilin: Guangxi Normal University, 2023. DOI: 10.27036/d.cnki.ggxsu.2023.000606. | |
[41] | YANG C, ZHANG L L, HU N T, et al. Rational design of sandwiched polyaniline nanotube/layered graphene/polyaniline nanotube papers for high-volumetric supercapacitors[J]. Chemical Engineering Journal, 2017, 309: 89-97. DOI: 10.1016/j.cej.2016.09.115. |
[42] | LI J P, XIAO D S, REN Y Q, et al. Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials[J]. Electrochimica Acta, 2019, 300: 193-201. DOI: 10.1016/j.electacta.2019.01.089. |
[43] | 卫大彪. 聚苯胺/还原氧化石墨烯复合膜的制备及其在超级电容器的应用[D]. 上海: 上海应用技术大学, 2021. DOI: 10.27801/d.cnki.gshyy.2021.000101. |
WEI D B. Preparation of polyaniline/reduced graphene oxide composite membrane and its application in supercapacitor[D]. Shanghai: Shanghai Institute of Technology, 2021. DOI: 10.27801/d.cnki.gshyy.2021.000101. | |
[44] | 唐晓宁, 夏澍, 罗秋洋, 等. 石墨烯-二氧化锰复合材料的制备及其在超级电容器中的应用[J]. 当代化工, 2022, 51(7): 1615-1619. DOI: 10.13840/j.cnki.cn21-1457/tq.2022.07.044. |
TANG X N, XIA S, LUO Q Y, et al. Preparation and application of graphene-manganese dioxide composites in supercapacitors[J]. Contemporary Chemical Industry, 2022, 51(7): 1615-1619. DOI: 10.13840/j.cnki.cn21-1457/tq.2022.07.044. | |
[45] | ZHU H Y, ZHAO J G, PANG M J, et al. Preparation of graphene/δ-MnO2 composites and supercapacitor performance[J]. CIESC Journal, 2017, 68(12): 4824-4832. DOI: 10.11949/j.issn.0438-1157.20171036. |
[46] | 张燕, 王继芬. 超级电容器PANI/MnO2复合材料电极的制备及性能研究[J]. 上海第二工业大学学报, 2022, 39(3): 218-224. DOI: 10.19570/j.cnki.jsspu.2022.03.005. |
ZHANG Y, WANG J F. Study on preparation and performance of PANI/MnO2 composite electrode for supercapacitor[J]. Journal of Shanghai Polytechnic University, 2022, 39(3): 218-224. DOI: 10.19570/j.cnki.jsspu.2022.03.005. |
[1] | Yunpeng ZHAO, Yanfang LI, Xinhao CUI, Haiyan SUN, Yingxue TENG. In situ synthesis of nitrogen-doped graphene for supercapacitor applications [J]. Energy Storage Science and Technology, 2025, 14(6): 2270-2277. |
[2] | Liang ZHANG, Xiong ZHOU, Jiukang TENG, Wenjing YANG, Xueming LI. Electrochemical properties of fluorinated Keqin black/graphene composite materials [J]. Energy Storage Science and Technology, 2025, 14(5): 1841-1849. |
[3] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[4] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[5] | Yan CHEN, Ziqi LI, Nanhao CHEN, Yichi ZHANG, Xiaohong WU, Dazhu CHEN. Advances in polymeric solid-solid phase change materials based on polyethylene glycol [J]. Energy Storage Science and Technology, 2025, 14(1): 124-139. |
[6] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[7] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[8] | Fei HAO, Junming WANG, Chunwei DONG, Linlin WEI, Yang DONG, Zhijiang SU, Wenbing LIANG. Preparation and research of three-dimensional silicon carbon anodes with a hollow structure [J]. Energy Storage Science and Technology, 2024, 13(1): 325-332. |
[9] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[10] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[11] | Zhun FENG. Ultra-flexible halloysite/polyaniline composite electrode based on graphene electrode [J]. Energy Storage Science and Technology, 2023, 12(6): 1794-1803. |
[12] | Chao TAN, Chao WANG. Study on the performance of functionalized graphene oxide as positive sulfur carrier for lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1025-1033. |
[13] | Panlei CAO, Linxiu SUI, Jingyun FENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Fe3+ crosslinking reduced graphene oxides free-standing film by pre-encapsulated Fe3O4 nanospheres for lithium storage [J]. Energy Storage Science and Technology, 2023, 12(3): 710-720. |
[14] | Xi TIAN, Yaxuan XIONG, Jing REN, Yanqi ZHAO, Shihao JIN, Shuo LI, Yang YANG, Yulong DING. Effect of carbon sequestration on the performance of waste concrete shape-stable phase change composites [J]. Energy Storage Science and Technology, 2023, 12(12): 3709-3719. |
[15] | Han ZHENG, Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 23-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||