Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 2903-2912.doi: 10.19799/j.cnki.2095-4239.2025.0460
• Special Issue on Short Term High-Frequency High-Power Energy Storage •
Yafeng FAN(), Zonglin YI, Lijing XIE, Xiaoming LI, Fangyuan SU(
)
Received:
2025-05-16
Revised:
2025-06-13
Online:
2025-08-28
Published:
2025-08-18
Contact:
Fangyuan SU
E-mail:fanyafeng@sxicc.ac.cn;sufangyuan@sxicc.ac.cn
CLC Number:
Yafeng FAN, Zonglin YI, Lijing XIE, Xiaoming LI, Fangyuan SU. Capacitor composition analysis of high-frequency supercapacitors based on first-order RC model[J]. Energy Storage Science and Technology, 2025, 14(8): 2903-2912.
Table 1
Fitting parameters of capacitance component division under high frequency of different electrodes"
参数 | 石墨烯膜电极 | 碳纳米管膜电极 | 炭化泡沫电极 |
---|---|---|---|
CDebye/(μF/cm2) | 0.91 | 1.54 | 98.17 |
CHN/(μF/cm2) | 29.90 | 84.58 | 284.61 |
CRBM/(μF/cm2) | 76.67 | 28.87 | 35.88 |
τDebye/s | 1.74×10-4 | 9.28×10-6 | 8.84×10-5 |
τHN/s | 1.00×10-2 | 1.00×10-2 | 1.00×10-2 |
τRBM/s | 7.09×10-2 | 9.56×10-1 | 6.25×10-1 |
α | 0.88 | 0.35 | 0.25 |
β | 0.40 | 3.00 | 2.81 |
γ | 0.36 | 0.58 | 0.59 |
[1] | LI C M, LI X M, LIU G Q, et al. Microcrack arrays in dense graphene films for fast-ion-diffusion supercapacitors[J]. Small, 2023, 19(33): 2301533. DOI: 10.1002/smll.202301533. |
[2] | WU M M, SUN K, HE J F, et al. Hierarchically 3D fibrous electrode for high-performance flexible AC-line filtering in fluctuating energy harvesters[J]. Advanced Functional Materials, 2023, 33(45): 2305039. DOI: 10.1002/adfm.202305039. |
[3] | ZHANG C G, JIAO X, WANG Y Y, et al. An ultra-low-temperature alternating current filter[J]. Small, 2024, 20(2): 2305949. DOI: 10.1002/smll.202305949. |
[4] | LI Z, XU M H, XIA Y E, et al. High-frequency supercapacitors surpassing dynamic limit of electrical double layer effects[J]. Nature Communications, 2025, 16: 3704. DOI: 10.1038/s41467-025-59015-7. |
[5] | LI Q, SUN S X, SMITH A D, et al. Compact and low loss electrochemical capacitors using a graphite/carbon nanotube hybrid material for miniaturized systems[J]. Journal of Power Sources, 2019, 412: 374-383. DOI: 10.1016/j.jpowsour. 2018. 11.052. |
[6] | HAN F M, QIAN O, MENG G W, et al. Structurally integrated 3D carbon tube grid-based high-performance filter capacitor[J]. Science, 2022, 377(6609): 1004-1007. DOI: 10.1126/science.abh4380. |
[7] | SANTHOSH N M, UPADHYAY K K, FILIPIČ G, et al. Widening the limit of capacitance at high frequency for AC line-filtering applications using aqueous carbon-based supercapacitors[J]. Carbon, 2023, 203: 686-694. DOI: 10.1016/j.carbon.2022.12.026. |
[8] | SUN Q J, CAO Z, MA Z, et al. Dipole-dipole interaction induced electrolyte interfacial model to stabilize antimony anode for high-safety lithium-ion batteries[J]. ACS Energy Letters, 2022, 7(10): 3545-3556. DOI: 10.1021/acsenergylett.2c01408. |
[9] | FORSE A C, GRIFFIN J M, MERLET C, et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy[J]. Nature Energy, 2017, 2: 16216. DOI: 10.1038/nenergy.2016.216. |
[10] | YU J H, YU C, SONG X D, et al. Microscopic-level insights into solvation chemistry for nonsolvating diluents enabling high-voltage/rate aqueous supercapacitors[J]. Journal of the American Chemical Society, 2023, 145(25): 13828-13838. DOI: 10.1021/jacs.3c02754. |
[11] | ZHANG K, ZHOU G H, FANG T M, et al. Different shapes based on ionic liquid leading to a two-stage discharge process[J]. Journal of Materials Chemistry A, 2022, 10(14): 7684-7693. DOI: 10.1039/D2TA00583B. |
[12] | LASIA A. Impedance of porous electrodes[J]. Journal of Electroanalytical Chemistry, 1995, 397(1/2): 27-33. DOI: 10.1016/0022-0728(95)04177-5. |
[13] | PAASCH G, MICKA K, GERSDORF P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes[J]. Electrochimica Acta, 1993, 38(18): 2653-2662. DOI: 10.1016/0013-4686(93)85083-B. |
[14] | BISQUERT J, GARCIA-BELMONTE G, FABREGAT-SANTIAGO F, et al. Anomalous transport effects in the impedance of porous film electrodes[J]. Electrochemistry Communications, 1999, 1(9): 429-435. DOI: 10.1016/S1388-2481(99)00084-3. |
[15] | GABERŠČEK M. Understanding Li-based battery materials via electrochemical impedance spectroscopy[J]. Nature Communications, 2021, 12: 6513. DOI: 10.1038/s41467-021-26894-5. |
[16] | GU C Y, YIN L, LI S, et al. Differential capacitance of ionic liquid and mixture with organic solvent[J]. Electrochimica Acta, 2021, 367: 137517. DOI: 10.1016/j.electacta.2020.137517. |
[17] | ZHANG Q, LIU X H, YIN L, et al. Electrochemical impedance spectroscopy on the capacitance of ionic liquid-acetonitrile electrolytes[J]. Electrochimica Acta, 2018, 270: 352-362. DOI: 10. 1016/j.electacta.2018.03.059. |
[18] | DRÜSCHLER M, HUBER B, ROLING B. On capacitive processes at the interface between 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and Au(111)[J]. The Journal of Physical Chemistry C, 2011, 115(14): 6802-6808. DOI: 10.1021/jp200395j. |
[19] | SANGORO J, COSBY T, KREMER F. Rotational and translational diffusion in ionic liquids[M]. Cham: Springer International Publishing, 2016: 29-51. |
[20] | DYRE J C, SCHRØDER T B. Universality of AC conduction in disordered solids[J]. Reviews of Modern Physics, 2000, 72(3): 873-892. DOI: 10.1103/RevModPhys.72.873. |
[21] | SCHöNHALS A, KREMER F. Analysis of dielectric spectra[M]. Berlin: Springer Berlin Heidelberg, 2003: 59-98. |
[22] | ROLING B, DRÜSCHLER M, HUBER B. Slow and fast capacitive process taking place at the ionic liquid/electrode interface[J]. Faraday Discussions, 2012, 154: 303-311. DOI: 10.1039/C1FD 00088H. |
[23] | BALDELLI S. Surface structure at the ionic liquid-electrified metal interface[J]. Accounts of Chemical Research, 2008, 41(3): 421-431. DOI: 10.1021/ar700185h. |
[24] | ANDERSON E, GROZOVSKI V, SIINOR L, et al. Influence of the electrode potential and in situ STM scanning conditions on the phase boundary structure of the single crystal Bi(111)|1-butyl-4-methylpyridinium tetrafluoroborate interface[J]. Journal of Electroanalytical Chemistry, 2013, 709: 46-56. DOI: 10.1016/j.jelechem.2013.10.004. |
[25] | PAJKOSSY T, KOLB D M. The interfacial capacitance of Au(100) in an ionic liquid, 1-butyl-3-methyl-imidazolium hexafluorophosphate[J]. Electrochemistry Communications, 2011, 13(3): 284-286. DOI: 10.1016/j.elecom.2011.01.004. |
[26] | YIN L, HUANG Y K, CHEN H X, et al. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes. II. Accounts of ionic interactions[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17606-17614. DOI: 10.1039/C8CP02943A. |
[27] | GOODWIN Z A H, FENG G, KORNYSHEV A A. Mean-field theory of electrical double layer in ionic liquids with account of short-range correlations[J]. Electrochimica Acta, 2017, 225: 190-197. DOI: 10.1016/j.electacta.2016.12.092. |
[28] | KORNYSHEV A A. Double-layer in ionic liquids: Paradigm change?[J]. The Journal of Physical Chemistry B, 2007, 111(20): 5545-5557. DOI: 10.1021/jp067857o. |
[29] | KILIC M S, BAZANT M Z, AJDARI A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(2 Pt 1): 021503. DOI: 10.1103/PhysRevE.75.021503. |
[1] | Rusong YANG, Zhaoxia HOU, Wei LI, Haoran WANG, Xu GAO, Haibo LONG. Preparation of PANI/MnO2/rGO-P ternary composite electrode and its application in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(7): 2791-2800. |
[2] | Ziheng ZHANG, Mengmeng GENG, Maosong FAN, Yuhong JIN, Jingbing LIU, Kai YANG, Hao WANG. SOH estimation based on distribution of relaxation times for the retired power lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(2): 770-778. |
[3] | Zhiying YANG, Wei LU, Jia YAO, Yang CHENG, Dejian WU, Hailong WEN. Liquid-cooled plate cooling channels design based on variable density topology optimization [J]. Energy Storage Science and Technology, 2025, 14(2): 702-713. |
[4] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[5] | Jingjing LEI, Zehao LI, Binbin CHEN, Denggao HUANG. Estimation of internal battery temperature based on electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2024, 13(8): 2823-2834. |
[6] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[7] | Yueming MIN, Chuang ZHANG, Wenjie LIU, Suzhen LIU, Zhicheng XU. Study on aging characteristics and failure mechanism of lithium-ion battery under slight-overcharge cycling [J]. Energy Storage Science and Technology, 2024, 13(10): 3343-3356. |
[8] | Di ZHU, Yangyang ZHAO, Dengxin AI, Li ZHANG, Yong ZHOU. Efficiency optimization of PMSM in flywheel energy storage under multiple working conditions based on genetic algorithm [J]. Energy Storage Science and Technology, 2024, 13(10): 3582-3592. |
[9] | Ye XIAO, Lei XU, Chong YAN, Jiaqi HUANG. Design and application of reference electrodes for lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 82-91. |
[10] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[11] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[12] | Xing WANG, Jun SUN, Ningfang CHEN, Li YAN. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy [J]. Energy Storage Science and Technology, 2023, 12(3): 857-869. |
[13] | Fangfang WANG, Xiangming FENG, Guangjin ZHAO, Dawei XIA, Yuxia HU, Weihua CHEN. Identification of retired power lithium-ion batteries of chemical systems by electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2023, 12(2): 609-614. |
[14] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[15] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||