Energy Storage Science and Technology
Chunling WU1,4(), Yao MA1, Zhanhao CHANG1, Taiping YANG1, jinhao MENG2,3, Yating CHANG3, Li WANG4(
), Xiangming HE4
Received:
2025-05-14
Revised:
2025-07-02
Contact:
Li WANG
E-mail:wuchl@chd.edu.cn;wang-l@tsinghua.edu.cn
CLC Number:
Chunling WU, Yao MA, Zhanhao CHANG, Taiping YANG, jinhao MENG, Yating CHANG, Li WANG, Xiangming HE. High precision estimation of SOP of lithium-ion batteries using multi constraint collaborative optimization and SSA-ELM dynamic compensation[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0447.
Tab.3
Power state performance evaluation indexes of each model under different duration"
模型种类 | 平均绝对误差 | 均方根误差 | 平均相对误差 | ||||||
---|---|---|---|---|---|---|---|---|---|
30s | 2min | 5min | 30s | 2min | 5min | 30s | 2min | 5min | |
MCC估计模型 | 1.5367 | 5.3814 | 5.8404 | 1.5962 | 10.4229 | 9.9889 | 0.384% | 6.228% | 6.900% |
MCC-ELM估计模型 | 0.1203 | 2.7202 | 1.3610 | 0.1123 | 1.9641 | 0.8297 | 0.006% | 0.192% | 0.111% |
MCC-SSA-ELM估计模型 | 0.0101 | 1.2682 | 0.1860 | 0.0639 | 1.2729 | 0.4852 | 0.002% | 0.113% | 0.042% |
[1] | UANG Bin, PAN Zhefei, SU Xiangyu, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399:274-286. |
[2] | HE Hongwen, SUN Fengchun, WANG Zhenpo, et al. China's battery electric vehicles lead the world Achievements in technology system architecture and technological breakthroughs[J]. Green Energy and Intelligent Transportation, 2022, 1(1):100020. |
[3] | 黄凯,郭永芳,李志刚. 动力锂离子电池荷电状态估计综述[J]. 电源技术, 2018, 42(9):1398-1401. |
HUANG Kai, GUO Yongfang, LI Zhigang. Review of state of charge estimation methods for power lithium-ion battery[J]. Chinese Journal of Power Sources,2018,42(9):1398-1401. | |
[4] | 彭思敏,徐璐,张伟峰,等.锂离子电池功率状态预测方法综述[J].机械工程学报,2022,58(20):361-378. |
PENG Simin, XU Lu, ZHANG Weifeng, et al. Overview of State of Power Prediction Methods for Lithium-ion Batteries [J]. Journal of Mechanical Engineering, 2022, 58(20): 361-378. | |
[5] | FARMANN A, SAUER D. A comprehensive review of on-board state-of-available-power prediction techniques for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources,2016,329:123-137. |
[6] | 顾启蒙,华肠,潘宇巍,等.锂离子电池功率状态估计方法综述[J].电源技术, 2019, 43(9): 1563-1567. |
GU Qimeng, HUA Yang, PAN Yuwei, et al. Revie of state of power estimation methods for lithium-ion battery[J]. Chinese Journal of Power Sources,2019,43(9):1563-1567. | |
[7] | 电动汽车用电池管理系统技术条件[M]. 国内-国家标准-国家市场监督管理总局 CN-GB,2020. |
Technical specifications of battery management system for electric vehicles [M]. Domestic-National Standards-State Administration for Market Regulation CN-GB,2020. | |
[8] | 郑方丹,姜久春,陈坤龙,等.基于数据统计特性的GS-SVM电池峰值功率预测模型[J].电力自动化设备, 2017,37(9):56-61. |
ZHENG Fangdan, JIANG Jiuchun, CHEN Kunlong, et al. Peak power prediction model for batteries based on data statistical characteristic and GS-SVM [J]. Electric Power Automation Equipment, 2017,37(9):56-61. | |
[9] | 程泽,孙幸勉,程思璐.一种锂离子电池荷电状态估计与功率预测方法[J].电工技术学报,2017,32(15):180-189. |
CHENG Ze, SUN Xingmian, CHENG Silu. Method for Estimation of State of Charge and Power Prediction of Lithium-Ion Battery [J]. Transactions of China Electrotechnical Society, 2017,32(15):180-189. | |
[10] | 李博豪.多约束条件下基于数据模型融合的锂离子电池状态多功能估计与分析[D].宁夏大学,2023. |
LI Bohao. Multifunctional estimation and analysis of lithium-ion battery state based on data model fusion under multiple constraints [D]. Ningxia University,2023. | |
[11] | FENG T, YANGL, ZHAO X, et al. Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction[J]. Journal of Power Sources,2015, 281:192-203. |
[12] | 高乐.锂离子电池SOP和SOE估计及半实物仿真验证[D].北京交通大学,2021. |
GAO Le. SOP and SOE estimation and hardware in the loop simulation verification of Lithium-ion batteries[D], 2021. | |
[13] | 王春雨,崔纳新,李长龙,等.基于电热耦合模型和多参数约束的动力电池峰值功率预测[J].机械工程学报,2019,55(20):28-35. |
WANG Chunyu, CUI Naxin, LI Changlong, et al. State of Power Prediction Based on Electro-thermal Battery Model and Multi-parameter Constraints for Lithium-ion Battery [J]. Journal of mechanical engineering, 2019,55(20):28-35. | |
[14] | MASOUD V, MASOOD Y, JAMES R, et al. Adaptive neuro-fuzzy inference system modeling to predict the performance of graphene nanoplatelets nanofluid-based direct absorption solar collector based on experimental study[J]. Renewable Energy,2020,163(1):807-824. |
[15] | 吴华伟,何成泽,洪强,等.基于IFFRLS-IMMUKF的商用车磷酸铁锂电池SOC估算[J/OL].储能科学与技术2025, (01): 1-15. |
WU Huawei, HE Chengze, HONG Qiang, et al. SOC estimation of Lithium Iron Phosphate batteries for commercial vehicles based on IFFRLS-IMMUKF [J/OL] Energy Storage Science and Technology, 2025, (01): 1-15. | |
[16] | 田元武,张诗建,周博雅,等.基于ARWLS-AEKF的锂电池SOC估计[J].电子测量术,2022,45(17):43-50. |
TIAN Yuanwu, ZHANG Shijian, ZHOU Boya, et al. Lithium battery SOC estimation based on ARWLS-AEKF joint algorithm [J]. Electronic Measurement Technique,2022,45(17):43-50. | |
[17] | 张金尧.基于二阶RC等效模型的锂电池状态估计研究[D].安徽理工大学,2023. |
ZHANG Jinyao. State estimation of lithium batteries based on second-order RC equivalent model [D]. Anhui University of Science and Technology,2023. | |
[18] | 赵可沦,江境宏,邓进,等.基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识方法[J].电子测量技术, 2022, 45(23):53-58. |
ZHAO Kelan, JIANG Jinghong, DENG Jin, et al. Parameter identification method of lithium battery equivalent circuit model based on forgetting factor recursive least squares[J]. Electronic Measurement Technology, 2022, 45(23):53-58. | |
[19] | 乔家璐,王顺利,于春梅,等.基于加权多新息AEKF的锂电池SOC在线估算[J].储能科学与技术,2021,10(06):2318-2325. |
QIAO Jialu, WANG Shunli, YU Chunmei, et al. Novel multiple weighted-AEKF method for online state-of-charge estimation of lithium-ion batteries [J]. Energy Storage Science and Technology,2021,10(06):2318-2325. | |
[20] | 韩乔妮,姜帆,程泽.变温度下IHF-IGPR 框架的锂离子电池健康状态预测方法[J].电工技术学报,2021,36(17):3705-3720. |
HAN Oiaoni, JIANG Fan, CHENG Ze. S State of Health Estimation for Lithium-Ion Batteries Based on the Framework of IHF-IGPR under Variable Temperature [J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3705-3720. | |
[21] | 巫春玲,吕晶晶,相里康,等.基于变分模态分解和核极限学习机集成模型的电动汽车锂电池健康状态预测[J/OL].电源学报,2023(9):1-14. |
WU Chunling, LV Jingjing, XIANG Likang, et al. Health State Prediction of Electric Vehicle Lithium Battery based on Inte-grated Model of Variation Modal Decomposition and Kernel Limit Learning Machine [J/OL]. Journal of Power Sources, 2023(9):1-14. | |
[22] | XUE Jiankai, Bo Shen. A novel swarm intelligence optimization approach: sparrow search algorithm [J]. Systems Science & Control Engineering,2020, 8(1): 22-34. |
[23] | 李嘉波,王志璇,田迪,等.变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J].储能科学与技术,2025,14(02):659-670. |
LI Jiabo, WANG Zhixuan, TIAN Di, et al. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology,2025,14(02):659-670. |
[1] | Zheng CHEN, Gongdong DUO, Jiangwei SHEN, Shiquan SHEN, Yu LIU, Fuxing WEI. State of health estimation for lithium battery based on incremental capacity analysis and VMD-GWO-KELM [J]. Energy Storage Science and Technology, 2025, 14(6): 2476-2487. |
[2] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[3] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. |
[4] | Ziheng ZHANG, Mengmeng GENG, Maosong FAN, Yuhong JIN, Jingbing LIU, Kai YANG, Hao WANG. SOH estimation based on distribution of relaxation times for the retired power lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(2): 770-778. |
[5] | Ying LIU, Bingxiang SUN, Xinze ZHAO, Junwei ZHANG. Joint estimation of SOC/SOP for lithium-ion batteries across a wide temperature range using an electro-thermal coupling model [J]. Energy Storage Science and Technology, 2024, 13(9): 3030-3041. |
[6] | Farong KOU, Xi LUO, Hao MEN, Yangjuan GUO, Tianxiang YANG. State of charge estimation of lithium battery based on feature optimization and improved extreme learning machine [J]. Energy Storage Science and Technology, 2023, 12(4): 1234-1243. |
[7] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[8] | Lianbing LI, Le ZHU, Ruixiong JING, Lanchao WANG, Qiqi HAN. Remaining useful life prediction of lithium-ion batteries based on the DESSA-DESN model and the NCA algorithm [J]. Energy Storage Science and Technology, 2023, 12(10): 3191-3202. |
[9] | Zheng CHEN, Yang CHEN, Jiangwei SHEN, Xuelei XIA, Shiquan SHEN, Renxin XIAO. Available capacity estimation of lithium-ion batteriesbased on the optimized support vector regression algorithm [J]. Energy Storage Science and Technology, 2023, 12(10): 3203-3213. |
[10] | Zhou LYU, Bo HE, Zhenze HUANG, Zhiyong LIANG. LE-ELM-based spatiotemporal modeling method of lithium battery thermal process [J]. Energy Storage Science and Technology, 2022, 11(10): 3200-3208. |
[11] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[12] | Qiao WANG, Meng WEI, Min YE, Jiabo LI, Xinxin XU. Estimation of lithium-ion battery SOC based on GWO-optimized extreme learning machine [J]. Energy Storage Science and Technology, 2021, 10(2): 744-751. |
[13] | LI Zhao1, SUN Xianzhong1,2, LI Chen1,2, ZHANG Xiong1,2, WANG Kai1,2, LIU Wenjie1,3, ZHANG Cheng2, MA Yanwei1,2. Application of mesoporous graphene/carbon black composite conductive additive in lithium-ion capacitor anode [J]. Energy Storage Science and Technology, 2017, 6(6): 1264-. |
[14] | LIU Jingdong. Factors impact charging process in lithium/sulfur batteries [J]. Energy Storage Science and Technology, 2015, 4(1): 61-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||