Energy Storage Science and Technology
Yan Zhang1(), Hongmei Zhang2, Mingshan Wang1, Xing Ling1
Received:
2025-05-15
Revised:
2025-06-07
CLC Number:
Yan Zhang, Hongmei Zhang, Mingshan Wang, Xing Ling. Synergistic effect of multi-component electrolyte on the rate performance and high temperature storage life of Cr8O21||Li primary battery[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0459.
Fig.1
(a)Radar chart: different properties of solvent, including viscosity, boiling point and dielectric constant;(b)The thermogravimetric analysis of two electrolytes;(c)The binding energy of Li+ with several solvents;(d)Raman spectra ranging from 700~800 cm-1; (e)The proportion of SSIP,CIP,and AGG structures in the electrolyte"
Fig.2
(a) The EIS diagram of stainless steel symmetrical battery with two electrolytes; (b) The Tafel curve of two electrolyte systems;The time-dependent response of [Li||Li] symmetrical cells to DC polarization, and the corresponding impedance spectrum: (c)COE,(d)PEEPB;(e) The contact angle between two electrolytes and PP separator"
Fig.3
The discharge curves of Cr8O21||Li battery at different rates: (a)COE,(b)PEEPB; (c) The energy density of Cr8O21||Li batteries under different current densities in different electrolytes; (d)The power density of Cr8O21||Li batteries under different current densities in different electrolytes"
1 | 孟庆飞, 杨睿, 金成龙, 等. 铬氧化物作为高容量锂电池正极材料的制备及其性能研究[J]. 储能科学与技术, 2023, 12(10):3049-3055. Meng Q F, Yang R, Jin C L, et al. Preparation and performance of high-capacity Cr8O21 as a cathode material for lithium batteries[J]. 储能科学与技术, 2023, 12(10): 3049-3055. |
2 | Liu J, Wang Z, Li H; Huang X, et al. Synthesis and characterization of Cr8O21 as cathode material for rechargeable lithium batteries. Solid State Ion. 2006, 177((26/32)): 2675–2678. |
3 | Belt J, Utgikar V, Bloom I. Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes[J]. Journal of Power Sources, 2011, 196(23): 10213-10221. |
4 | Fang Z, Yang Y, Zheng T, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte[J]. Energy Storage Materials, 2021, 42: 477-483. |
5 | 杨睿, 李惠, 孟庆飞, 等. PC 基电解液对 Li/CrOx 一次电池高倍率性能的影响[J]. 物理化学学报, 2024, 40(9): 2308053. Yang R, Li H, Meng Q F, et al. Influence of PC-based electrolyte on high-rate performance in Li/CrOx primary battery[J]. Acta Physico Chimica Sinica. 2024, 40(9): 2308053-2308053. |
6 | Liang H J, Su M Y, Zhao X X, et al. Weakly-solvating electrolytes enable ultralow-temperature(-80℃) and high-power CFx/Li primary batteries[J]. Science China Chemistry,2023,66(7): 1982-1988. |
7 | 金成龙,孙梦婷,孟庆飞,等. Cr8O21/Li电池宽温电解液的设计与应用[J].储能科学与技术, 2025, 14(4): 1369-1376. JIN C L, SUN M T, MENG Q F, et al. Design and application of wide temperature electrolytes for Cr8O21/Libatteries[J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376 |
8 | Zhou S Z, Liu X Y, Ji W W, et al. Electrolyte design for a high energy density Li/Cr8O21 primary battery in a wide-temperature range[J]. Journal of Power Sources, 2024, 614: 235006-235006. |
9 | Xiao Z X,Wu SY,Ren X Z, et al. Superior High-Rate Ni-Rich Lithium Batteries Based on Fast Ion-Desolvation and Stable Solid-Electrolyte Interphase[J]. Advanced science, 2025, 12(12): e2413419. |
10 | Chen X X, Liu G P, Fu A, et al. Electrolyte Strategy Enables High-Rate Lithium Carbon Fluoride (Li/CFx) Primary Batteries in All-Climate Environments[J]. Advanced Functional Materials, 2025, 35(3): 2413423. |
11 | Xu Kang. Electrolytes and Interphases in Li-Ion Batteries and Beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
12 | Li Z H, Yao X Y, Zheng M T, et al. Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from -80℃ to 80℃[J]. Angew Chem Int Ed, 2024, 64(2): e202409409. |
13 | Jiang Z P, Mo J S, Li C, et al. Anion-Regulated Weakly Solvating Electrolytes for High-Voltage Lithium Metal Batteries[J]. Energy Environ Materials. 2023, 6(6): e12440. |
14 | Ming J, Cao Z, Li Q, et al. Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries[J]. Acs Energy Letters, 2019, 4(7): 1584-1593. |
15 | Shen C, Guan D, Liu W, et a. Synergistic Solvent Design for Fluorine-Free Electrolytes in High-Performance Lithium-Ion Batteries[J]. Advanced Functional Materials, 2025,2503713. |
16 | Xiao G Y,Yang K, Qiu Y, et al. Dielectric-Tailored Space Charge Layer and Ion Coordination Structure for High-Voltage Polymer All-Solid-State Lithium Batteries[J]. Advanced materials, 2025, e2415411. |
17 | Fan Z, Zhang J, Wu L, et al. Solvation structure dependent ion transport and desolvation mechanism for fast-charging Li-ion batteries[J]. Chemical Science, 2024, 15(41): 17161–17172. |
18 | CHEN L, NIAN Q S, RUAN D G, et al. High-safety and highefficiency electrolyte design for 4.6 V-class lithium-ion batteries with a non-solvating flame-retardant[J]. Chemical Science, 2022, 14(5): 1184-1193. |
19 | Li L Y, Wu R Z, Ma H C,et al. Toward the High-Performance Lithium Primary Batteries by Chemically Modified Fluorinate Carbon with δ-MnO2[J]. Small, 2023, 19(26): 2300762. |
20 | 广玉, 刘新伟, 梅悦旎, 等. 锂离子电池高温贮存容量衰减分析[J]. 储能科学与技术, 2022, 11(5): 1339-1349. Guang Y, Liu X W, Mei Y N,Capacity fading analysis of lithium-ion battery after high temperature storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
21 | Zhu Y L, Zhu J G, Jiang B, et al. Insights on the degradation mechanism for large format prismatic graphite/LiFePO4 battery cycled under elevated temperature[J]. Journal of Energy Storage, 2023, 60: 106624. |
22 | Kum K S, Song M K, Kim Y T, et al. The effect of mixed salts in gel-coated polymer electrolyte for advanced lithium battery[J]. Electrochimica Acta, 2004, 50(2-3): 285-288. |
23 | Luo Z, Luo S, Yang M, et al. Revealing the Mechano-Electrochemical Coupling Behavior and Discharge Mechanism of Fluorinated Carbon Cathodes toward High-Power Lithium Primary Batteries[J]. Small (Weinheim an der Bergstrasse, Germany), 2024, 20(7): e2305980-e2305980. |
24 | Du Z, Wood D L, Belharouak I. Enabling fast charging of high energy density Li-ion cells with high lithium transport electrolytes[J]. Electrochemistry Communications, 2019, 103: 109-113. |
[1] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
[2] | Wei YANG, Zhiguo LI, Caiting LAI, Ruirui ZHAO, Yu LI, Yingke ZHOU, Yiling HUANG, Licai ZHU, Wei FENG, Wenlong WANG, Zhongzhi YUAN. Comparative study on self-discharge rate of new CF x lithium primary batteries and recommendations for their use [J]. Energy Storage Science and Technology, 2024, 13(11): 3742-3753. |
[3] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[4] | Miaomiao CHEN, Qinjun SHAO, Jian CHEN. Preparation and application of Cr8O21 as cathode material for high specific energy lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 3011-3020. |
[5] | Jiukang TENG, Ningning WU, Chang WANG, Qingjie WANG, Bin SHI. Preparation and electrochemical performance of high capacity chromium oxide Cr8O21 cathode materials for lithium primary batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3455-3462. |
[6] | TONG Huan, ZHANG Bei. Development course and future direction of chemical power sources [J]. Energy Storage Science and Technology, 2018, 7(S1): 8-16. |
[7] | CHEN Yuqing1,2, ZHANG Hongzhang1,3, YU Ying1,2, QU Chao1, LI Xianfeng1,3, ZHANG Huamin1,3. The R&D status and prospects for primary lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 529-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||