Energy Storage Science and Technology
Previous Articles Next Articles
Chen Kai-yu(✉),XIA Yu-han,WANG Jia-qi,LIU Bo-yu,WANG Hong-yu(✉)
Received:2025-10-21
Revised:2025-12-08
Contact:
WANG Hong-yu
E-mail:cky12346@163.com;HYuWang26@163.com
CLC Number:
Chen Kai-yu, XIA Yu-han, WANG Jia-qi, LIU Bo-yu, WANG Hong-yu. Preparation and Electrochemical Performance Study of AlPO4-Coated Oxygen Vacancy-Containing LiNi0.5Co0.2Mn0.3O2 Material[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0932.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://esst.cip.com.cn/EN/10.19799/j.cnki.2095-4239.2025.0932
| [1]Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy & Environmental Science, 2011, 4(9): 3243-62. [百度学术] [2]Dunn B, Kamath H, Tarascon J-M. Electrical Energy Storage for the Grid: A Battery of Choices [J]. Science, 2011, 334(6058): 928-35. [百度学术] [3]Nitta N, Wu F, Lee J T, et al. Li-ion battery materials: present and future [J]. Materials Today, 2015, 18(5): 252-64. [百度学术] [4]Dang R, Qu Y, Ma Z, et al. The effect of elemental doping on nickel-rich NCM cathode materials of lithium ion batteries [J]. The Journal of Physical Chemistry C, 2021, 126(1): 151-9. [百度学术] [5]饶蕾, 黄镇泽. 锂离子电池储能技术研究进展 [J]. 轻工标准与质量, 2024, (05): 118-9+23. [百度学术] Rao Lei, Huang Zhenze. Research Progress on Lithium-ion Battery Energy Storage Technology [J]. Light Industry Standards and Quality, 2024, (05): 118-9+23. [百度学术] [6]刘博宇, 庞青, 王腾飞, et al. 高镍三元正极材料LiNi0.8Co0.1Mn0.1O2在高压下的研究进展 [J]. 储能科学与技术, 2024, 13(11): 3784-95. [百度学术] Liu Boyu, Pang Qing, Wang Tengfei, et al. Research Progress on High-Nickel Ternary Cathode Material LiNi0.8Co0.1Mn0.1O2 Under High Pressure [J]. Energy Storage Science and Technology,2024, 13(11): 3784-95. [百度学术] [7]朱守聪, 施志聪. 无钴富锂锰基正极材料Li1.2Ni0.2Mn0.6O2的表面改性及电化学性能研究 [J]. 材料研究与应用, 2024, 18(02): 241-7. [百度学术] Zhu Shoucong, Shi Zhicong. Surface Modification and Electrochemical Performance of Cobalt-Free Lithium-Rich Manganese-Based Cathode Material Li1.2Ni0.2Mn0.6O2 [J]. Materials Research and Application,2024, 18(02): 241-7. [百度学术] [8]Jung C-H, Shim H, Eum D, et al. Challenges and recent progress in LiNi x Co y Mn1- x- y O2 (NCM) cathodes for lithium ion batteries [J]. Journal of the Korean Ceramic Society, 2021, 58(1): 1-27. [百度学术] [9]Li D, Guo H, Jiang S, et al. Microstructures and electrochemical performances of TiO2-coated Mg–Zr co-doped NCM as a cathode material for lithium-ion batteries with high power and long circular life [J]. New Journal of Chemistry, 2021, 45(41): 19446-55. [百度学术] [10]Negi R S, Culver S P, Wiche M, et al. Optimized atomic layer deposition of homogeneous, conductive Al2O3 coatings for high-nickel NCM containing ready-to-use electrodes [J]. Physical Chemistry Chemical Physics, 2021, 23(11): 6725-37. [百度学术] [11]Ren J, Liu Z, Tang Y, et al. Enhancing electrochemical performance of nickel-rich NCM cathode material through Nb modification across a wide temperature range [J]. Journal of Power Sources, 2024, 606: 234522. [百度学术] [12]Yan J, Huang H, Tong J, et al. Recent progress on the modification of high nickel content NCM: Coating, doping, and single crystallization [J]. Interdisciplinary Materials, 2022, 1(3): 330-53. [百度学术] [13]Yu H F, Wang S L, Hu Y J, et al. Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability [J]. Green Energy & Environment, 2022, 7(2): 266-74. [百度学术] [14]Yang G, Yang S, Lai F, et al. Improved Cycling Stability of Ni-Rich Cathode Material by In Situ Introduced TM-B-O Amorphous Surface Structure [J]. ACS Applied Materials & Interfaces, 2024, 16(12): 15505-13. [百度学术] [15]Lin C, Meng X, Liang M, et al. Facilitating reversible transition metal migration and expediting ion diffusivity via oxygen vacancies for high performance O3-type sodium layered oxide cathodes [J]. Journal of Materials Chemistry A, 2023, 11(1): 68-76. [百度学术] [16]Shi X-H, Chen J-J, Cao X-R, et al. Formation of oxygen vacancies in Li-rich Mn-based cathode material Li1.167Ni0.167Co0.167Mn0.5O2 [J]. Acta Physica Sinica, 2022, 71(17): 178202-1--9. [百度学术] [17]Lee S, Jin W, Kim S H, et al. Oxygen Vacancy Diffusion and Condensation in Lithium-Ion Battery Cathode Materials [J]. Angewandte Chemie International Edition, 2019, 58(31): 10478-85. [百度学术] [18]Yoon W-S, Chung K Y, McBreen J, et al. A comparative study on structural changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 during first charge using in situ XRD [J]. Electrochemistry Communications, 2006, 8(8): 1257-62. [百度学术] [19]Li Z, Dong Y, Feng J, et al. Controllably Enriched Oxygen Vacancies through Polymer Assistance in Titanium Pyrophosphate as a Super Anode for Na/K-Ion Batteries [J]. ACS Nano, 2019, 13(8): 9227-36. [百度学术] [20]Zhang H, Wu L, Feng R, et al. Oxygen Vacancies Unfold the Catalytic Potential of NiFe-Layered Double Hydroxides by Promoting Their Electronic Transport for Oxygen Evolution Reaction [J]. ACS Catalysis, 2023, 13(9): 6000-12. [百度学术] [21]Wu Z, Zhao Y, Jin W, et al. Recent Progress of Vacancy Engineering for Electrochemical Energy Conversion Related Applications [J]. Advanced Functional Materials, 2021, 31(9): 2009070. [百度学术] [22]Yan P, Zheng J, Tang Z-K, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes [J]. Nature Nanotechnology, 2019, 14(6): 602-8. [百度学术] [23]Hou X, Ohta K, Kimura Y, et al. Lattice Oxygen Instability in Oxide-Based Intercalation Cathodes: A Case Study of Layered LiNi1/3Co1/3Mn1/3O2 [J]. Advanced Energy Materials, 2021, 11(30): 2101005. [百度学术] [24]刘博宇, 王腾飞, 庞青, et al. Mg-Cr共掺LiNi0.5Mn1.5O4包覆LiNi0.8Co0.1Mn0.1O2锂离子电池正极材料 [J]. 无机材料学报, 2025: 1-11. [百度学术] Liu Boyu, Wang Tengfei, Pang Qing, et al. Mg-Cr Co-Doped LiNi0.5Mn1.5O4 Coated LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2025: 1-11. [百度学术] [25]Chu Y, Mu Y, Zou L, et al. Construction of Stable Oxygen Redox by Electrochemical Activation O–TM–Se in Nickel-Rich Layered Oxides for Lithium-Ion Batteries [J]. Small Structures, 2024, 5(1): 2300247. [百度学术] [26]Chu Y, Mu Y, Gu H, et al. Invoking Interfacial Engineering Boosts Structural Stability Empowering Exceptional Cyclability of Ni-Rich Cathode [J]. Advanced Materials, 2024, 36(32): 2405628. [百度学术] [27]Li W, Yang L, Li Y, et al. Ultra-Thin AlPO4 Layer Coated LiNi0.7Co0.15Mn0.15O2 Cathodes With Enhanced High-Voltage and High-Temperature Performance for Lithium-Ion Half/Full Batteries [J]. Frontiers in Chemistry, 2020, Volume 8 - 2020. [百度学术] [28]Wang J-H, Wang Y, Guo Y-Z, et al. Electrochemical characterization ofAlPO4 coatedLiNi1/3Co1/3Mn1/3O2cathode materials for high temperature lithium battery application [J]. Rare Metals, 2021, 40(1): 78-83. [百度学术] [29]陈凯宇, 刘博宇, 夏雨菡, et al. 氧空位在Na+/Li+电池中的研究进展 [J]. 功能材料: 2025 1-20. [百度学术] Chen Kaiyu, Liu Boyu, Xia Yuhan, et al. Research Progress on Oxygen Vacancies in Na+/Li+ Batteries [J]. Functional Materials: 2025 1-20. [百度学术] [30]Butt A, Jamil S, Fasehullah M, et al. An effective tellurium surface modification strategy to enhance the capacity and rate capability of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material [J]. Heliyon, 2024, 10(7). [百度学术] [31]Wang X, Liu J, Hu Y, et al. Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries [J]. Science China Materials, 2022, 65(6): 1421-30. [百度学术] [32]Liu B, Wang T, Pang Q, et al. Enhancing the high-voltage electrochemical performance of Single-crystal LiNi0.5Co0.2Mn0.3O2 with mesoporous TiO2 coating and Ti doping [J]. Ceramics International, 2025, 51(23, Part A): 38141-51. [百度学术] [33]Zhao Y, Kantichaimongkol P, Yang C, et al. Surface engineering with bifunctional layer in LiNi0.5Co0.2Mn0.3O2 for high-performance cathode materials of lithium-ion batteries [J]. Journal of Alloys and Compounds, 2025, 1010: 177661. [百度学术] [34]Bi X, Chang L, Cao S, et al. Preparation and Improvement of Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode Materials In Situ Coated with AlPO4 [J]. Energy & Fuels, 2023, 37(4): 3236-46. [百度学术] [35]Wang C, Liu F, Kan K, et al. Realization of a high voltage Ni rich layer LiNi0.5Co0.2Mn0.3O2 single crystalline cathode for LIBs by surface modification [J]. Ceramics International, 2023, 49(5): 7956-64. [百度学术] [36]Zhang Y, Wang Z, Zhong Y, et al. Coating for improving electrochemical performance of NCM523 cathode for lithium-ion batteries [J]. Ionics, 2021, 27(1): 13-20. [百度学术] [37]Xie Y, Wu F, Dai X, et al. Excellent electrochemical performance of LiNi0.5Co0.2Mn0.3O2 with good crystallinity and submicron primary dispersed particles [J]. International Journal of Energy Research, 2021, 45(4): 6041-53. [百度学术] [38]Shen R, Zhu H, Liu J, et al. Improved electrochemical performance of Al2O3-coated@ K and Cl dual-doped LiNi0. 5Co0. 2Mn0. 3O2 cathode materials at high cut-off voltage [J]. Journal of Electronic Materials, 2021, 50(10): 5721-31. [百度学术] [39]Zhu J, Zheng J, Cao G, et al. Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries [J]. Journal of Power Sources, 2020, 464: 228207. [百度学术] |
| [1] | Xiuwen TAN, Ling LI. Study on the thermal runaway characteristics of lithium-ion batteries and their thermal management under local overheating conditions [J]. Energy Storage Science and Technology, 2025, 14(9): 3521-3529. |
| [2] | Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies [J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300. |
| [3] | Yan ZHAO, Hao LIU, Zonglin YI, Li LI, Lijing XIE, Fangyuan SU. Interfacial behavior of FEC and VC at graphite anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3249-3258. |
| [4] | Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2025, 14(9): 3622-3635. |
| [5] | Juqiang FENG, Chengzhi ZHANG, Yuhang CHEN. A high-precision SOC and temperature joint estimation method based on rapid prototype modeling [J]. Energy Storage Science and Technology, 2025, 14(9): 3567-3580. |
| [6] | Xiaoyu BAI, Yajing YAN, Zhirong ZHANG, Lingli KONG. Research on the performance of composite graphite lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(9): 3259-3268. |
| [7] | Lei ZHANG. Operating status monitoring and evaluation of lithium-ion battery energy storage power stations [J]. Energy Storage Science and Technology, 2025, 14(9): 3538-3540. |
| [8] | Xinyu BAO, Xiangdong KONG, Taolin LV, Zhicheng ZHU, Xuebing HAN, Xin LAI, Yuejiu ZHENG, Tao SUN. Battery internal resistance prediction and rapid sorting method based on production line big data [J]. Energy Storage Science and Technology, 2025, 14(9): 3541-3551. |
| [9] | Honghui LIU, Donghui LI, Qifeng QIAN, Lingchao XIAO, Lei XIONG, Zhongguo CHEN. Preparation of vanadium nitride-based electrode materials and their application progress in supercapacitors [J]. Energy Storage Science and Technology, 2025, 14(8): 3110-3121. |
| [10] | Chengshan XU, Ye SUN, Zhikai YANG, Mingqiang ZHAO, Yalun LI, Xuning FENG, Hewu WANG, Languang LU, Minggao OUYANG. Research progress on arc induced by thermal runaway in lithium-ion battery systems for energy storage [J]. Energy Storage Science and Technology, 2025, 14(8): 3037-3050. |
| [11] | Pengju LI, Xiaoyu CHEN, Jia XIE, Jiani SHEN, Yijun HE. Research progress on state of power prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(8): 3028-3036. |
| [12] | Liyue HU, Wei HUANG, Yun ZHOU, Yingqiang ZHOU, Changzheng SHAO, Ke WANG. Fuzzy reasoning-based evaluation of the thermal diffusion probability of lithium-ion battery modules for energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(7): 2662-2674. |
| [13] | Feng XIONG, Depeng KONG, Ping PING, Yue ZHANG, Xiantong REN, Yao LV. Study on the characteristics of electrothermal coupling-induced thermal runaway of ternary lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2752-2760. |
| [14] | Wenyuan WENG, Bin SHEN, Jiangong ZHU, Yang WANG, Huapeng LU, Wuliyasu HE, Haonan LIU, Haifeng DAI, Xuezhe WEI. Detecting hazardous lithium plating on anodes of lithium-ion batteries—A review of in situ methods [J]. Energy Storage Science and Technology, 2025, 14(7): 2575-2589. |
| [15] | Zijing ZHANG, Beibei YUAN, Hong LI, Ying GAO. Thermal runaway gas detection and early warning of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(7): 2820-2832. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||