Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (5): 520-525.doi: 10.3969/j.issn.2095-4239.2014.05.011
• Research & development • Previous Articles Next Articles
XIANG Huanhuan, CHEN Guansheng, ZHANG Renyuan, LIU Chongchong, LI Feng
Received:
2014-04-04
Online:
2014-09-01
Published:
2014-09-01
CLC Number:
XIANG Huanhuan, CHEN Guansheng, ZHANG Renyuan, LIU Chongchong, LI Feng. Thermal conductivity of metal-phase change materials--A review[J]. Energy Storage Science and Technology, 2014, 3(5): 520-525.
[1] Li Jianli(李建立),Xue Ping(薛平). Application of nanotechnology in phase change heat storage[J]. Sciencepaper Online (中国科技论文在线),2008,3(4):299-305. [2] Feng H,Liu X,He S, et al . Studies on solid-solid phase transitions of polyols by infrared spectroscopy[J]. Thermochimica Acta ,2000,348(1):175-179. [3] Li Jin(李金). Research advancement application of phase change heat storing materials[J]. Journal of Beijing Union University : Natural Sciences (北京联合大学学报:自然科学版),2005,19(3):74-77. [4] Li Jiong(李炅),Zhang Xiuping(张秀平),Jia Lei(贾磊), et al. Research progress of open cell metal foams thermal transport performance[J]. Journal of Refrigeration (制冷学报),2013,34(4):96-102. [5] Bhattacharya A,Calmidi V V,Mahajan R L. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer ,2002,45(5):1017-1031. [6] Boomsma K,Poulikakos D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer ,2001,44(4):827-836. [7] Cheng Wenlong(程文龙),Wei Wenjing(韦文静). Theoretical analysis of phase change material storage with high porosity metal foams[J]. Acta Energiae Solaris Sinica (太阳能学报),2007,28(7):739-744. [8] Zhang Tao(张涛),Yu Jianzu(余建祖). Analysis on thermal conductivity enhancement for PCM embedded in metal foam[J]. Journal of Refrigeration (制冷学报),2007,28(6):13-17. [9] Mesalhy O,Lafdi K,Elgafy A, et al . Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix[J]. Energy Conversion and Management ,2005,46(6):847-867. [10] Zhang Yanchen(张岩琛),Gao Dongyan(杲东彦),Chen Zhenqian(陈振乾). Influence of porosity on melting of phase change materials in metal foams with lattice Boltzmann method[J]. Journal of Southeast University : Natural Science Edition (东南大学学报:自然科学版),2013,43(1):94-98. [11] Zhang Z,Fang X. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Energy Conversion and Management ,2006,47(3):303-310. [12] Chen Zhenqian(陈振乾),Gu Mingwei(顾明伟),Shi Mingheng(施明恒). Numerical simulation on phase change heat transfer of paraffin in metal foams[J]. Journal of Thermal Science and Technology (热科学与技术),2010,9(2):106-111. [13] Gu Mingwei(顾明伟),Chen Zhenqian(陈振乾),Shi Mingheng(施明恒). Numerical simulation on solidification heat transfer process of paraffin in metal foams[J]. Journal of Engineering Thermophysics (工程热物理学报),2010,31(11):1929-1932. [14] Sheng Qiang(盛强),Xing Yuming(邢玉明),Wang Ze(王泽). Preparation and performance analysis of metal foam composite phase change material[J]. Journal of Chemical Industry and Engineering (化工学报),2013,64(10):3565-3570. [15] Son C H,Morehouse J H. Thermal conductivity enhancement of solid-solid phase-change materials for thermal storage[J]. Journal of Thermophysics and Heat Transfer ,1991,5(1):122-124. [16] Tian Y,Zhao C Y. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals[J]. Energy ,2011,36(9):5539-5546. [17] Zhi Hao(支浩),Xi Zhengping(奚正平),Tang Huiping(汤慧萍). Study on fabrication and properties used for heat transfer of porous fiber metals[D]. Xi'an:Xi'an University of Architecture and Technology,2009. [18] Rathod M K,Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems:A review[J]. Renewable and Sustainable Energy Reviews ,2013,18:246-258. [19] Khan M A,Rohatgi P K. Numerical solution to a moving boundary problem in a composite medium[J]. Numerical Heat Transfer ,1994,25(2):209-221. [20] Siegel R. Solidification of low conductivity material containing dispersed high conductivity particles[J]. International Journal of Heat and Mass Transfer ,1977,20(10):1087-1089. [21] Cui Yong(崔勇),Liu Le(刘乐). Research of organic phase change thermal energy storage material properties improvement[J]. Journal of Adult Education School of Hebei University of Technology (河北工业大学成人教育学院学报),2008,(4):23-25. [22] Choi S U S. Enhanceing thermal conductivity of fluids with nanoparticles[C]//Developments and applications of non-newtonian flows. New York:ASME,1995:99-105. [23] Wang Buxuan(王补宣),Zhou Leping(周乐平),Peng Xiaofeng(彭晓峰). Fractal model of nanoparticles suspensions effective thermal conductivity[J]. Progress in Natural Science (自然科学进展),2003,13(8):838-842. [24] Murshed S M S,Leong K C,Yang C. A combined model for the effective thermal conductivity of nanofluids[J]. Applied Thermal Engineering ,2009,29(11):2477-2483. [25] Xiang Jun(向军),Li Juxiang(李菊香). Effective thermal conductivity of nanoparticles suspension[J]. Refrigeration (低温与超导),2009,37(1):59-62. [26] Sitprasert C,Dechaumphai P,Juntasaro V. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer[J]. Journal of Nanoparticle Research ,2009,11(6):1465-1476. [27] Leong K C,Yang C,Murshed S M S. A model for the thermal conductivity of nanofluids-the effect of interfacial layer[J]. Journal of Nanoparticle Research ,2006,8(2):245-254. [28] Sebti S S,Mastiani M,Kashani S, et al. Numerical study of melting in an annulur enclosure filled with nano-enhanced phase change material[J]. Thermal Science ,2013,doi:10.2298/TSCI111102144S. [29] Wu Shuying(吴淑英). Enhanced heat transfer experimental and simulation research of nanocomposite phase change materials[D]. Guangzhou:South China University of Technology,2010. [30] Huang Fang(黄芳). A aumerical study of nano-enhanced phase chang materials as applied to thermal energy storage-based thermal management systems for electronics[D]. Hangzhou:Zhejiang University,2012. [31] Dhaidan N S,Khodadadi J M,Al-Hattab T A, et al . Experimental and numerical investigation of melting of phase change material/nano-particle suspensions in a square container subjected to a constant heat flux[J]. International Journal of Heat and Mass Transfer ,2013,66:672-683. [32] Sebti S S,Mastiani M,Mirzaei H, et al . Numerical study of the melting of nano-enhanced phase change material in a square cavity[J]. Journal of Zhejiang University Science A ,2013,14(5):307-316. [33] Zou Deqiu(邹得球),Xiao Rui(肖睿),Feng Ziping(冯自平). Progress in heat transfer enhancement of phase change fluid using nano-particles[J]. Modern Chemical Industry (现代化工),2012,31(12):29-31. [34] Meng Duo(孟多),Wang Lijiu(王立久). Preparation and thermal properties of fatty acid/inorganic nano-particle form-stable phase change material[J]. Journal of Building Materials (建筑材料学报),2013,16(1):91-96. [35] Khodadadi J M,Hosseinizadeh S F. Nanoparticle-enhanced phase change materials (NEP, CM) with great potential for improved thermal energy storage[J]. International Communications in Heat and Mass Transfer ,2007,34(5):534-543. [36] Parameshwaran R,Jayavel R,Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles[J]. Journal of Thermal Analysis and Calorimetry ,2013,114(2):845-858. [37] Wu W,Bostanci H,Chow L C, et al . Heat transfer enhancement of PAO in micro channel heat exchanger using nano-encapsulated phase change indium particles[J]. International Journal of Heat and Mass Transfer ,2013,58(1):348-355. [38] Tong X,Khan J A,Ruhul A M. Enhancement of heat transfer by inserting a metal matrix into a phase change material[J]. Numerical Heat Transfe r Part A : Applications ,1996,30(2):125-141. [39] Trelles J P,Dufly J J. Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling[J]. Applied Thermal Engineering ,2003,23(13):1647-1664. [40] Wu Zhigen(吴志根),Tao Wenquan(陶文铨). Analysis of the heat transfer performance of metal matrix material in the phase change thermal storage system[J]. Journal of Engineering Thermophysics (工程热物理学报),2013,34(2):307-309. |
[1] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[2] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[3] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[4] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[5] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[6] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[7] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[8] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[9] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[10] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[11] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[12] | Ying TAO, Lingfei ZHAO, Yunxiao WANG, Yuliang CAO, Shulei CHOU. Stabilization of sodium metal anodes by dual-salt high concentration electrolyte [J]. Energy Storage Science and Technology, 2022, 11(4): 1103-1109. |
[13] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[14] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[15] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||