Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (5): 526-543.doi: 10.3969/j.issn.2095-4239.2014.05.012
• Expert lectures • Previous Articles Next Articles
PENG Jiayue, LIU Yali, HUANG Jie, LI Hong
Received:
2014-08-13
Online:
2014-09-01
Published:
2014-09-01
CLC Number:
PENG Jiayue, LIU Yali, HUANG Jie, LI Hong. Fundamental scientific aspects of lithium ion batteries(Ⅺ)--Lithium air and lithium sulfur batteries[J]. Energy Storage Science and Technology, 2014, 3(5): 526-543.
[1] Barber W A,Feldman A M,Fraioli A V. Composite paper electrode for a voltaic cell:US,3551205A[P/OL]. 1970-12-29. http://www.google.com/patents/US3551205. [2] Moser J R,Schneider A A. Primary cells and iodine containing cathodes therefor:US,3674562A[P/OL]. 1972-07-04. http://www.google.com/ patents/US3674562. [3] Weast R. The Redox Potentials Against the Standard Hydrogen Electrode (SHE) for Various Reactions, Usually Called "Electrochemical Series"//Handbook of Chemistry and Physics [M]. 51st ed. Boca Raton:CRC Press Inc.,1970. [4] Rauh R D,Brummer S B. Effect of additives on lithium cycling in propylene carbonate[J]. Electrochimica Acta ,1977,22(1): 75-83. [5] Newman G H,Francis R W,Gaines L H, et al . Hazard investigations of LiClO 4 -dioxolane electrolyte[J]. Journal of the Electrochemical Society ,1980,127(9):2025-2027. [6] Nishi Y,Azuma H,Omaru A. Non aqueous electrolyte cell:US,4959281A[P/OL]. 1990-09-25. http://www.google. com/patents/US4959281. [7] Girishkumar G,Mccloskey B,Luntz A C, et al . Lithium-air battery:Promise and challenges[J]. Journal of Physical Chemistry Letters ,2010,1(14):2193-2203. [8] Abraham K M,Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. Journal of the Electrochemical Society ,1996,143(1):1-5. [9] Read J. Ether-based electrolytes for the lithium/oxygen organic electrolyte battery[J]. Journal of the Electrochemical Society ,2006,153(1):A96-A100. [10] Ogasawara T,Debart A,Holzapfel M, et al . Rechargeable Li 2 O 2 electrode for lithium batteries[J]. Journal of the American Chemical Society ,2006,128(4):1390-1393. [11] Visco S J,Katz B D,Nimon Y S, et al. Prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers:US,2005175894-A1[P/OL]. 2005-08-11. http://www.google.com/patents/US20050175894. [12] Kowalczk I,Read J,Salomon M. Li-air batteries:A classic example of limitations owing to solubilities[J]. Pure and Applied Chemistry ,2007,79(5):851-860. [13] Kumar B,Kumar J,Leese R, et al . A solid-state, rechargeable, long cycle life lithium-air battery[J]. Journal of the Electrochemical Society ,2010,157(1):A50-A54. [14] Wang Y,Zhou H. A lithium-air battery with a potential to continuously reduce O 2 from air for delivering energy[J]. Journal of Power Sources ,2010,195(1):358-361. [15] Peng Z,Freunberger S A,Hardwick L J, et al . Oxygen reactions in a non-aqueous Li + electrolyte[J]. Angewandte Chemie-International Edition ,2011,50(28):6351-6355. [16] McCloskey B D,Scheffler R,Speidel A, et al . On the mechanism of nonaqueous LiO 2 electrochemistry on C and its kinetic overpotentials:Some implications for Li-air batteries[J]. Journal of Physical Chemistry C ,2012,116(45):23897-23905. [17] Laoire C O,Mukerjee S,Plichta E J, et al . Rechargeable lithium/TEGDME-LiPF 6 /O 2 battery[J]. Journal of the Electrochemical Society ,2011,158(3):A302-A308. [18] Lu Y C,Gallant B M,Kwabi D G, et al . Lithium-oxygen batteries:Bridging mechanistic understanding and battery performance[J]. Energy & Environmental Science ,2013,6(3):750-768. [19] Bruce P G,Freunberger S A,Hardwick L J, et al . LiO 2 and LiS batteries with high energy storage[J]. Nature Materials ,2012,11(1):19-29. [20] Zu C X,Li H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science ,2011,4(8):2614-2624. [21] Peng Jiayue(彭佳悦),Zu Chenxi(祖晨曦),Li Hong(李泓). Fundamental scientific aspects of lithium batteries(I) Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(1):55-62. [22] Guo Xiangxin(郭向欣),Huang Shiting(黄诗婷),Zhao Ning(赵宁),Cui Zhonghui(崔忠慧),Fan Wugang(范武刚),Li Chilin(李驰麟),Li Hong(李泓). Rapid development and critical issues of secondary lithium-air batteries[J]. Journal of Inorganic Materials (无机材料学报),2014,29(2):113-123. [23] Lu J,Li L,Park J B, et al . Aprotic and aqueous LiO 2 batteries[J]. Chemical Reviews ,2014,114(11):5611-5640. [24] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem. Rev. ,2004,104(10):4303-4317. [25] Aurbach D,Gofer Y,Langzam J. The correlation between surface-chemistry, surface-morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems[J]. Journal of the Electrochemical Society ,1989,136(11):3198-3205. [26] Aurbach D,Daroux M,Faguy P, et al . The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts[J]. Journal of Electroanalytical Chemistry ,1991,297(1):225-244. [27] Mizuno F,Nakanishi S,Kotani Y, et al . Rechargeable Li-air batteries with carbonate-based liquid electrolytes[J]. Electrochemistry ,2010,78(5):403-405. [28] Zhang Z,Lu J,Assary R S, et al . Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes[J]. The Journal of Physical Chemistry C ,2011,115(51):25535-25542. [29] Xu W,Xu K,Viswanathan V V, et al . Reaction mechanisms for the limited reversibility of LiO 2 chemistry in organic carbonate electrolytes[J]. Journal of Power Sources ,2011,196(22):9631-9639. [30] Xu W,Viswanathan V V,Wang D, et al . Investigation on the charging process of Li 2 O 2 -based air electrodes in LiO 2 batteries with organic carbonate electrolytes[J]. Journal of Power Sources ,2011,196(8):3894-3899. [31] McCloskey B D,Bethune D S,Shelby R M, et al . Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry[J]. The Journal of Physical Chemistry Letters ,2011,2(10):1161-1166. [32] Freunberger S A,Chen Y,Peng Z, et al . Reactions in the rechargeable LiO 2 battery with alkyl carbonate electrolytes[J]. Journal of the American Chemical Society ,2011,133(20):8040-8047. [33] Bryantsev V S,Giordani V,Walker W, et al . Predicting solvent stability in aprotic electrolyte Li-air batteries:Nucleophilic substitution by the superoxide anion radical(O2 • - )[J]. Journal of Physical Chemistry A ,2011,115(44):12399-12409. [34] Bryantsev V S,Blanco M. Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes[J]. The Journal of Physical Chemistry Letters ,2011,2(5):379-383. [35] Peng Z,Freunberger S A,Hardwick L J, et al . Oxygen reactions in a non-aqueous Li + electrolyte[J]. Angewandte Chemie International Edition ,2011,50(28):6351-6355. [36] Xu D,Wang Z L,Xu J J, et al . Novel DMSO-based electrolyte for high performance rechargeable LiO 2 batteries[J]. Chemical Communications ,2012,48(55):6948-6950. [37] Lu Y C,Kwabi D G,Yao K P C, et al . The discharge rate capability of rechargeable LiO 2 batteries[J]. Energy & Environmental Science ,2011,4(8):2999-3007. [38] Xu W,Hu J,Engelhard M H, et al . The stability of organic solvents and carbon electrode in nonaqueous LiO 2 batteries[J]. Journal of Power Sources ,2012,215:240-247. [39] Assary R S,Curtiss L A,Redfern P C, et al . Computational studies of polysiloxanes:Oxidation potentials and decomposition reactions[J]. The Journal of Physical Chemistry C ,2011,115(24):12216-12223. [40] Assary R S,Lau K C,Amine K, et al . Interactions of dimethoxy ethane with Li 2 O 2 clusters and likely decomposition mechanisms for LiO 2 batteries[J]. The Journal of Physical Chemistry C ,2013,117(16):8041-8049. [41] Bryantsev V S,Faglioni F. Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries[J]. The Journal of Physical Chemistry A ,2012,116(26):7128-7138. [42] Hsu C W,Chen P,Ting J M. Microwave-assisted hydrothermal synthesis of TiO 2 mesoporous beads having C and/or N doping for use in high efficiency all-plastic flexible dye-sensitized solar cells[J]. Journal of the Electrochemical Society ,2013,160(3):H160-H165. [43] Mccloskey B D,Scheffler R,Speidel A, et al . On the efficacy of electrocatalysis in nonaqueous LiO 2 batteries[J]. Journal of the American Chemical Society ,2011,133(45):18038-18041. [44] McCloskey B D,Bethune D S,Shelby R M, et al . Limitations in rechargeability of LiO 2 batteries and possible origins[J]. Journal of Physical Chemistry Letters ,2012,3(20):3043-3047. [45] Xu W,Xiao J,Zhang J, et al . Optimization of nonaqueous electrolytes for primary lithium/air batteries operated in ambient environment[J]. Journal of the Electrochemical Society ,2009,156(10):A773-A779. [46] Black R,Oh S H,Lee J H, et al . Screening for superoxide reactivity in LiO 2 batteries:Effect on Li 2 O 2 /LiOH crystallization[J]. Journal of the American Chemical Society ,2012,134(6):2902-2905. [47] Jung H G,Hassoun J,Park J B, et al . An improved high-performance lithium-air battery[J]. Nature Chemistry ,2012,4(7):579-585. [48] Shui J L,Okasinski J S,Kenesei P, et al . Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nature Communications ,2013,4:2255. [49] Zhang L,Zhang S,Zhang K, et al . Mesoporous NiCo 2 O 4 nanoflakes as electrocatalysts for rechargeable LiO 2 batteries[J]. Chemical Communications ,2013,49(34):3540-3542. [50] Xu J J,Xu D,Wang Z L, et al . Synthesis of perovskite-based porous La 0.75 Sr 0.25 MnO 3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Angewandte Chemie International Edition ,2013,52(14):3887-3890. [51] Lei Y,Lu J,Luo X, et al . Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition:Application for rechargeable LiO 2 battery[J]. Nano Letters ,2013,13(9):4182-4189. [52] Freunberger S A,Chen Y,Drewett N E, et al . The lithium-oxygen battery with ether-based electrolytes[J]. Angewandte Chemie International Edition ,2011,50(37):8609-8613. [53] Jung H G,Kim H S,Park J B, et al . A transmission electron microscopy study of the electrochemical process of lithium-oxygen cells[J]. Nano Letters ,2012,12(8):4333-4335. [54] Laoire C O,Mukerjee S,Abraham K M, et al . Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery[J]. The Journal of Physical Chemistry C ,2010,114(19):9178-9186. [55] Lopez N,Graham D J,Mcguire R, et al . Reversible reduction of oxygen to peroxide facilitated by molecular recognition[J]. Science ,2012,335(6067):450-453. [56] Sun B,Zhang J,Munroe P, et al . Hierarchical NiCo 2 O 4 nanorods as an efficient cathode catalyst for rechargeable non-aqueous LiO 2 batteries[J]. Electrochemistry Communications ,2013,31:88-91. [57] Trahan M J,Mukerjee S,Plichta E J, et al . Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte[J]. Journal of the Electrochemical Society ,2013,160(2):A259-A267. [58] Chen Y,Freunberger S A,Peng Z, et al . LiO 2 battery with a dimethylformamide electrolyte[J]. Journal of the American Chemical Society ,2012,134(18):7952-7957. [59] Walker W,Giordani V,Uddin J, et al . A rechargeable LiO 2 battery using a lithium nitrate/ N , N -dimethylacetamide electrolyte[J]. Journal of the American Chemical Society ,2013,135(6):2076-2079. [60] Allen C J,Mukerjee S,Plichta E J, et al . Oxygen electrode rechargeability in an ionic liquid for the Li-air battery[J]. The Journal of Physical Chemistry Letters ,2011,2(19):2420-2424. [61] Peng Z,Freunberger S A,Chen Y, et al . A reversible and higher-rate LiO 2 battery[J]. Science ,2012,337(6094):563-566. [62] Cecchetto L,Salomon M,Scrosati B, et al . Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid[J]. Journal of Power Sources ,2012,213:233-238. [63] Xie B,Lee H S,Li H, et al . New electrolytes using Li 2 O or Li 2 O 2 oxides and tris (pentafluorophenyl) borane as boron based anion receptor for lithium batteries[J]. Electrochemistry Communications ,2008,10(8):1195-1197. [64] Zheng D,Lee H S,Yang X Q, et al . Electrochemical oxidation of solid Li 2 O 2 in non-aqueous electrolyte using peroxide complexing additives for lithium-air batteries[J]. Electrochemistry Communications ,2013,28:17-19. [65] Xu W,Xiao J,Wang D, et al . Effects of nonaqueous electrolytes on the performance of lithium/air batteries[J]. Journal of the Electrochemical Society ,2010,157(2):A219-A224. [66] Chen Y,Freunberger S A,Peng Z, et al . Charging a LiO 2 battery using a redox mediator[J]. Nature Chemistry ,2013,5(6):489-494. [67] Lim H D,Song H,Kim J, et al . Superior rechargeability and efficiency of lithium-oxygen batteries:Hierarchical air electrode architecture combined with a soluble catalyst[J]. Angewandte Chemie ,2014,53(15):3926-3931. [68] Xiao J,Mei D,Li X, et al . Hierarchically porous graphene as a lithium-air battery electrode[J]. Nano Letters ,2011,11(11):5071-5078. [69] Zhang S S,Foster D,Read J. Discharge characteristic of a non-aqueous electrolyte Li/O 2 battery[J]. Journal of Power Sources ,2010,195(4):1235-1240. [70] Xiao J,Wang D,Xu W, et al . Optimization of air electrode for Li/air batteries[J]. Journal of the Electrochemical Society ,2010,157(4):A487-A492. [71] Yang X H,He P,Xia Y Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery[J]. Electrochemistry Communications ,2009,11(6):1127-1130. [72] Kuboki T,Okuyama T,Ohsaki T, et al . Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte[J]. Journal of Power Sources ,2005,146(1-2):766-769. [73] Qin Y,Lu J,Du P, et al . In situ fabrication of porous-carbon-supported α-MnO 2 nanorods at room temperature:Application for rechargeable LiO 2 batteries[J]. Energy & Environmental Science ,2013,6(2):519-531. [74] Zhang J G,Wang D,Xu W, et al . Ambient operation of Li/air batteries[J]. Journal of Power Sources ,2010,195(13):4332-4337. [75] Mitchell R R,Gallant B M,Thompson C V, et al . All-carbon-nanofiber electrodes for high-energy rechargeable LiO 2 batteries[J]. Energy & Environmental Science ,2011,4(8):2952-2958. [76] Mitchell R R,Gallant B M,Shao-Horn Y, et al . Mechanisms of morphological evolution of Li 2 O 2 particles during electrochemical growth[J]. The Journal of Physical Chemistry Letters ,2013,4(7):1060-1064. [77] Gallant B M,Mitchell R R,Kwabi D G, et al . Chemical and morphological changes of Li/O 2 battery electrodes upon cycling[J]. The Journal of Physical Chemistry C ,2012,116(39):20800-20805. [78] Yoo E,Zhou H. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts[J]. ACS Nano ,2011,5(4):3020-3026. [79] Zheng H,Xiao D,Li X, et al . New insight in understanding oxygen reduction and evolution in solid-state lithium-oxygen batteries using an in situ environmental scanning electron microscope[J]. Nano Letters ,2014,14(8):4245-4249. [80] Zhong L,Mitchell R R,Liu Y, et al . In situ transmission electron microscopy observations of electrochemical oxidation of Li 2 O 2 [J]. Nano Letters ,2013,13(5):2209-2214. [81] Wang Z L,Xu D,Xu J J, et al . Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li/O 2 batteries[J]. Advanced Functional Materials ,2012,22(17):3699-3705. [82] Gallant B M,Kwabi D G,Mitchell R R, et al . Influence of Li 2 O 2 morphology on oxygen reduction and evolution kinetics in Li/O 2 batteries[J]. Energy & Environmental Science ,2013,6(8):2518-2528. [83] Ottakam T M,Freunberger S A,Peng Z, et al . The carbon electrode in nonaqueous Li/O 2 cells[J]. Journal of the American Chemical Society ,2013,135(1):494-500. [84] Ottakam T M,Freunberger S A,Peng Z, et al . A stable cathode for the aprotic LiO 2 battery[J]. Nat. Mater. ,2013,12(11):1050-1056. [85] Dong S,Chen X,Wang S, et al . 1D coaxial platinum/titanium nitride nanotube arrays with enhanced electrocatalytic activity for the oxygen reduction reaction:Towards Li-air batteries[J]. Chem. Sus. Chem. ,2012,5(9):1712-1715. [86] Li F,Tang D M,Chen Y, et al . Ru/ITO:A carbon-free cathode for nonaqueous LiO 2 battery[J]. Nano Letters ,2013,13(10):4702-4707. [87] Jian Z,Liu P,Li F, et al . Core-shell-structured CNT@RuO 2 composite as a high-performance cathode catalyst for rechargeable LiO 2 batteries[J]. Angewandte Chemie : International Edition , 2014,53(2):442-426. [88] Kichambare P,Kumar J,Rodrigues S, et al . Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries[J]. Journal of Power Sources ,2011,196(6):3310-3316. [89] Kichambare P,Rodrigues S,Kumar J. Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries[J]. ACS Applied Materials & Interfaces ,2012,4(1):49-52. [90] Cheng F,Liang J,Tao Z, et al . Functional materials for rechargeable batteries[J]. Advanced Materials ,2011,23(15):1695-1715. [91] Cheng F,Chen J. Metal-air batteries:From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews ,2012,41(6):2172-2192. [92] Debart A,Bao J,Armstrong G, et al . An O 2 cathode for rechargeable lithium batteries:The effect of a catalyst[J]. Journal of Power Sources ,2007,174(2):1177-1182. [93] Debart A,Paterson A J,Bao J, et al . α-MnO 2 nanowires:A catalyst for the O 2 electrode in rechargeable lithium batteries[J]. Angewandte Chemie : International Edition ,2008,47(24):4521-4524. [94] Giordani V,Freunberger S A,Bruce P G, et al . H 2 O 2 decomposition reaction as selecting tool for catalysts in LiO 2 cells[J]. Electrochemical and Solid State Letters ,2010,13(12):A180-A183. [95] Miyazaki K,Kawakita K I,Abe T, et al . Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities[J]. Journal of Materials Chemistry ,2011,21(6):1913-1917. [96] Yuasa M,Nishida M,Kida T, et al . Bi-functional oxygen electrodes using LaMnO 3 /LaNiO 3 for rechargeable metal-air batteries[J]. Journal of the Electrochemical Society ,2011,158(5):A605-A610. [97] Fu Z,Lin X,Huang T, et al . Nano-sized La 0.8 Sr 0.2 MnO 3 as oxygen reduction catalyst in nonaqueous Li/O 2 batteries[J]. J. Solid State Electrochem. ,2012,16(4):1447-1452. [98] Suntivich J,Gasteiger H A,Yabuuchi N, et al . Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry ,2011,3(7):546-550. [99] Chen Z,Higgins D,Yu A, et al . A review on non-precious metal electrocatalysts for PEM fuel cells[J]. Energy & Environmental Science ,2011,4(9):3167-3192. [100] Li F,Ohnishi R,Yamada Y, et al . Carbon supported TiN nanoparticles:An efficient bifunctional catalyst for non-aqueous Li/O 2 batteries[J]. Chemical Communications ,2013,49(12):1175-1177. [101] Kitaura H,Zhou H. Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode[J]. Advanced Energy Materials ,2012,2(7):889-894. [102] Shui J L,Karan N K,Balasubramanian M, et al . Fe/N/C composite in LiO 2 battery:Studies of catalytic structure and activity toward oxygen evolution reaction[J]. Journal of the American Chemical Society ,2012,134(40):16654-16661. [103] Lu Y C,Gasteiger H A,Parent M C, et al . The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries[J]. Electrochemical and Solid State Letters ,2010,13(6):A69-A72. [104] Lu Y C,Xu Z,Gasteiger H A, et al . Platinum-gold nanoparticles:A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society ,2010,132(35):12170-12171. [105] Li F,Chen Y,Zhou H, et al . Performance-improved LiO 2 battery with Ru nanoparticles supported on binder-free multiwalled carbon nanotube paper as cathode[J]. Energy & Environmental Science ,2014,7:1648-1652. [106] Xu J J,Wang Z L,Xu D, et al . Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries[J]. Nature Communications ,2013,4:24-38. [107] Ren X,Zhang S S,Tran D T, et al . Oxygen reduction reaction catalyst on lithium/air battery discharge performance[J]. Journal of Materials Chemistry ,2011,21(27):10118-10125. [108] Mccloskey B D,Scheffler R,Speidel A, et al . On the efficacy of electrocatalysis in nonaqueous Li/O 2 batteries[J]. Journal of the American Chemical Society ,2011,133(45):18038-18041. [109] Imanishi N,Hasegawa S,Zhang T, et al . Lithium anode for lithium-air secondary batteries[J]. Journal of Power Sources ,2008,185(2):1392-1397. [110] Hassoun J,Jung H G,Lee D J, et al . A metal-free, lithium-ion oxygen battery:A step forward to safety in lithium-air batteries[J]. Nano Letters ,2012,12(11):5775-5779. [111] Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources ,2000,89(2):206-218. [112] Cohen Y S,Cohen Y,Aurbach D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy[J]. The Journal of Physical Chemistry B ,2000,104(51):12282-12291. [113] Choi N S,Lee Y M,Cho K Y, et al . Protective layer with oligo (ethylene glycol) borate anion receptor for lithium metal electrode stabilization[J]. Electrochemistry Communications ,2004,6(12):1238-1242. [114] Singh M,Gur I,Eitouni H B, et al . Solid Electrolyte material manufacturable by polymer processing methods:US,20090075176A1[P/OL]. 2009-03-19. http://www.google.com/patents/ US20090075176. [115] Visco S J,Katz B D,Nimon Y S, et al . Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture:CN,100568613C[P/OL]. 2009-12-09. http://www.google.com/patents/ CN100568613C?cl=en. [116] Zhang D,Li R,Huang T, et al . Novel composite polymer electrolyte for lithium air batteries[J]. Journal of Power Sources ,2010,195(4):1202-1206. [117] Baker R W. Future directions of membrane gas separation technology[J]. Industrial & Engineering Chemistry Research ,2002,41(6):1393-1411. [118] Zhang J,Xu W,Liu W. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air[J]. Journal of Power Sources ,2010,195(21):7438-7444. [119] Zhang J,Xu W,Li X, et al . Air dehydration membranes for nonaqueous lithium-air batteries[J]. Journal of the Electrochemical Society ,2010,157(8):A940-A946. [120] Crowther O,Keeny D,Moureau D M, et al . Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane[J]. Journal of Power Sources ,2012,202:347-351. [121] Fu Z,Wei Z,Lin X, et al . Polyaniline membranes as waterproof barriers for lithium air batteries[J]. Electrochimica Acta ,2012,78:195-199. [122] Lau K C,Curtiss L A,Greeley J. Density functional investigation of the thermodynamic stability of lithium oxide bulk crystalline structures as a function of oxygen pressure[J]. Journal of Physical Chemistry C ,2011,115(47):23625-23633. [123] Radin M D,Rodriguez J F,Tian F, et al . Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not[J]. Journal of the American Chemical Society ,2011,134(2):1093-1103. [124] Gerbig O,Merkle R,Maier J. Electron and ion transport in Li 2 O 2 [J]. Advanced Materials ,2013,25(22):3129-3133. [125] Garcia-Lastra J M,Bass J D,Thygesen K S. Communication:Strong excitonic and vibronic effects determine the optical properties of Li 2 O 2 [J]. Journal of Chemical Physics ,2011,135(12):121101. [126] Chen J,Hummelsh J J S,Thygesen K S, et al . The role of transition metal interfaces on the electronic transport in lithium-air batteries[J]. Catalysis Today ,2011,165(1):2-9. [127] Ong S P,Mo Y,Ceder G. Low hole polaron migration barrier in lithium peroxide[J]. Physical Review B ,2012,85(8):81105. [128] Hummelsh J J S,Blomqvist J,Datta S, et al . Communications:Elementary oxygen electrode reactions in the aprotic Li-air battery[J]. The Journal of Chemical Physics ,2010,132(7):71101. [129] Lau K C,Assary R S,Redfern P, et al . Electronic structure of lithium peroxide clusters and relevance to lithium-air batteries[J]. The Journal of Physical Chemistry C ,2012,116(45):23890-23896. [130] Lu J,Jung H J,Lau K C, et al . Magnetism in lithium-oxygen discharge product[J]. Chem. Sus. Chem. ,2013,6(7):1196-1202. [131] Yang J,Zhai D,Wang H H, et al . Evidence for lithium superoxide-like species in the discharge product of a Li/O 2 battery[J]. Physical Chemistry Chemical Physics ,2013,15(11):3764-3771. [132] Aetukurin B,McCloskey B D,Garc A J M, et al . On the origin and implications of Li 2 O 2 toroid formation in nonaqueous LiO 2 batteries[EB/OL]. 2014-07-12. http://arxiv.org/abs/1406.3335. [133] Zhang T,Zhou H. A reversible long-life lithium-air battery in ambient air[J]. Nature Communications ,2013,4:1817. [134] Zhang T,Zhou H. From LiO 2 to Li-air batteries:Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen[J]. Angewandte Chemie-International Edition ,2012,51(44):11062-11067. [135] Takechi K,Shiga T,Asaoka T. A LiO 2 /CO 2 battery[J]. Chemical Communications ,2011,47(12):3463-3465. [136] Gowda S R,Brunet A,Wallraff G M, et al . Implications of CO 2 contamination in rechargeable nonaqueous LiO 2 batteries[J]. Journal of Physical Chemistry Letters ,2013,4(2):276-279. [137] McCloskey B D,Speidel A,Scheffler R, et al . Twin problems of interfacial carbonate formation in nonaqueous LiO 2 batteries[J]. Journal of Physical Chemistry Letters ,2012,3(8):997-1001. [138] McCloskey B D,Bethune D S,Shelby R M, et al . Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry[J]. Journal of Physical Chemistry Letters ,2011,2(10):1161-1166. [139] Wang R,Yu X,Bai J, et al . Electrochemical decomposition of Li 2 CO 3 in NiO-Li 2 CO 3 nanocomposite thin film and powder electrodes[J]. Journal of Power Sources ,2012,218:113-118. [140] Liu Y,Wang R,Lyu Y, et al . Rechargeable Li/CO 2 -O 2 (2∶1) battery and Li/CO 2 battery[J]. Energy & Environmental Science ,2014,7(2):677-681. [141] Pensado-Rodriguez O,Urquidi-Macdonald M,Macdonald D D. Electrochemical behavior of lithium in alkaline aqueous electrolytes - I. Thermodynamics[J]. Journal of the Electrochemical Society ,1999,146(4):1318-1325. [142] Urquidi-Macdonald M,Macdonald D D,Pensado O, et al . The electrochemical behavior of lithium in alkaline aqueous electrolytes[J]. Electrochimica Acta ,2001,47(5):833-840. [143] Kemp D D L E L,Momye W R, et al . Proceeding of the 11th IECECC[C]//Lake Tahoe,1976. [144] Ding Fei(丁飞),Zhang Jing(张晶),Yang Kai(杨凯), et al . Study on lithium electrode corrosion in KOH aqueous electrolytes (I)[J]. Chin. J. Power Sources (电源技术),2008,32(2):91-94. [145] Kim J K,Yang W,Salim J, et al . Li-water battery with oxygen dissolved in water as a cathode[J]. Journal of the Electrochemical Society ,2013,161(3):A285-A289. [146] Danuta H,Juliusz U. Electric dry cells and storage batteries: US,3043896A[P/OL]. 1962-07-10. http://www.google.com/patents/ US3043896. [147] Yao N P,HeredY L A,Saunders R C. Secondary lithium-sulfur battery[J]. Journal of the Electrochemical Society ,1970,117(8):8. [148] Rauh R D,Abraham K M,Pearson G F, et al . Lithium-dissolved sulfur battery with an organic electrolyte[J]. Journal of the Electrochemical Society ,1979,126(4):523-527. [149] Evers S,Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts of Chemical Research ,2013,46(5):1135-1143. [150] Xiong S,Xie K,Diao Y, et al . Oxidation process of polysulfides in charge process for lithium-sulfur batteries[J]. Ionics ,2012,18(9):867-872. [151] Kolosnitsyn V S,Karaseva E V. Lithium-sulfur batteries:Problems and solutions[J]. Russ. J. Electrochem. ,2008,44(5):506-509. [152] Mikhaylik Y V,Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. Journal of the Electrochemical Society ,2004,151(11):A1969-A1976. [153] Kumaresan K,Mikhaylik Y,White R E. A mathematical model for a lithium-sulfur cell[J]. Journal of the Electrochemical Society ,2008,155(8):A576-A582. [154] Shin E S,Kim K,Oh S H, et al . Polysulfide dissolution control:The common ion effect[J]. Chemical Communications ,2013,49(20):2004-2006. [155] Zhang S S. Liquid electrolyte lithium/sulfur battery:Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources ,2013,231:153-162. [156] Aurbach D,Pollak E,Elazari R, et al . On the surface chemical aspects of very high energy density, rechargeable Li/S batteries[J]. Journal of the Electrochemical Society ,2009,156(8):A694-A702. [157] Zhang S S. Role of LiNO 3 in rechargeable lithium/sulfur battery[J]. Electrochimica Acta ,2012,70:344-348. [158] Xiong S,Xie K,Diao Y, et al . Properties of surface film on lithium anode with LiNO 3 as lithium salt in electrolyte solution for lithium-sulfur batteries[J]. Electrochimica Acta ,2012,83:78-86. [159] Liang X,Wen Z,Liu Y, et al . Improved cycling performances of lithium sulfur batteries with LiNO 3 -modified electrolyte[J]. Journal of Power Sources ,2011,196(22):9839-9843. [160] Xiong S,Kai X,Hong X, et al . Effect of LiBOB as additive on electrochemical properties of lithium-sulfur batteries[J]. Ionics ,2012,18(3):249-254. [161] Song M S,Han S C,Kim H S, et al . Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries[J]. Journal of the Electrochemical Society ,2004,151(6):A791-A795. [162] Zhang Y,Zhao Y,Yermukhambetova A, et al . Ternary sulfur/polyacrylonitrile/Mg 0.6 Ni 0.4 O composite cathodes for high performance lithium/sulfur batteries[J]. Journal of Materials Chemistry A ,2013,1(2):295-301. [163] Choi Y J,Jung B S,Lee D J, et al . Electrochemical properties of sulfur electrode containing nano Al 2 O 3 for lithium/sulfur cell[J]. Physica Scripta ,2007,2007(T129):62-75. [164] Ji X,Evers S,Black R, et al . Stabilizing lithium-sulphur cathodes using polysulphide reservoirs[J]. Nat. Commun. ,2011,2:325. [165] Su Y S,Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nat. Commun. ,2012,3:1166. [166] Zu C,Su Y S,Fu Y, et al . Improved lithium-sulfur cells with a treated carbon paper interlayer[J]. Physical Chemistry Chemical Physics ,2013,15(7):2291-2297. [167] Su Y S,Manthiram A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical Communications ,2012,48(70):8817-8819. [168] Suo L,Hu Y S,Li H, et al . A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat. Commun. ,2013,4:1481. |
[1] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[2] | Chunshui SUN, Decai GUO, Jian CHEN. Preparation and research of carbonized agaric material for sulfur cathodes [J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068. |
[3] | YUAN Yan, ZHENG Dongdong, FANG Zhao, LIU Manbo, LI Tao. Research progress on sulfur cathode of lithium sulfur battery [J]. Energy Storage Science and Technology, 2018, 7(4): 618-630. |
[4] | WANG Weikun, WANG Anbang, JIN Zhaoqing, YANG Yusheng. Development and strategy for cathode materials of advanced lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 331-344. |
[5] | YUAN Huadong, LUO Jianmin, JIN Chengbin, SHENG Ouwei, HUANG Hui, ZHANG Wenkui, TAO Xinyong . Carbon materials with modified surfaces and interfaces for the high performance cathode of lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 380-410. |
[6] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[7] | LIU Xinyan, PENG Hongjie, HUANG Jiaqi, ZHANG Qiang, WEI Fei. Carbon nanotubes for flexible energy storage devices--A review [J]. Energy Storage Science and Technology, 2013, 2(5): 433-450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||