Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (4): 374-381.doi: 10.3969/j.issn.2095-4239.2015.04.005
• Research &development • Previous Articles Next Articles
XIN Peiming, JIN Bo, HOU Jiazi, YAN Qingguang, ZHONG Xiaobin, WANG Huanhuan, GAO Fan
Received:
2014-12-09
Online:
2015-08-19
Published:
2015-08-19
CLC Number:
XIN Peiming, JIN Bo, HOU Jiazi, YAN Qingguang, ZHONG Xiaobin, WANG Huanhuan, GAO Fan. Research progress of cathode materials for lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2015, 4(4): 374-381.
[1] Jiang H,Fu Y,Hu Y J, et al . Hollow LiMn 2 O 4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances[J]. Small ,2014,10:1096-1100. [2] Lee S H,Cho Y H,Song H K, et al . Carbon-coated single-crystal LiMn 2 O 4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries[J] Angewandte Chemie International Edition ,2012,51:8748-8752. [3] Mun J Y,Yim T E,Park J H, et al . Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO 2 for advanced, safe lithium-ion batteries[J]. Scientific Reports ,2014,4:5802. [4] Xiong X H,Ding D,Bu Y F, et al . Enhanced electrochemical properties of a LiNiO 2 -based cathode material by removing lithium residues with (NH 4 ) 2 HPO 4 [J]. Journal of Materials Chemistry A ,2014,2:11691-11696. [5] Jin B,Jin E M,Park K H, et al . Electrochemical properties of LiFePO 4 -multiwalled carbon nanotubes composite cathode materials for lithium polymer battery[J]. Electrochemistry Communications ,2008,10:1537-1540. [6] Sarasketa-Zabala E,Gandiaga I,Martinez-Laserna E, et al . Cycle ageing analysis of a LiFePO 4 /graphite cell with dynamic model validations:Towards realistic lifetime predictions[J]. Journal of Power Sources ,2015,275:573-587. [7] Jeong J S,Lee H W,Choi J C, et al . Effect of LiFePO 4 cathode density and thickness on electrochemical performance of lithium metal polymer batteries prepared by in situ thermal polymerization[J]. Electrochimica Acta ,2015,154:149-156. [8] Xiong X H,Wang Z X,Yan G C, et al . Role of V 2 O 5 coating on LiNiO 2 -based materials for lithium ion battery[J]. Journal of Power Sources ,2014,245:183-193. [9] Chen H R,Dawson J A,Harding J H. Effects of cationic substitution on structural defects in layered cathode materials LiNiO 2 [J]. Journal of Materials Chemistry A ,2014,2:7988-7996. [10] Gao X F,Sha Y J,Lin Q, et al . Combustion-derived nanocrystalline LiMn 2 O 4 as a promising cathode material for lithium-ion batteries[J]. Journal of Power Sources ,2015,275:38-44. [11] Xia L,Xia Y G,Liu Z P, et al . Thiophene derivatives as novel functional additives for high-voltage LiCoO 2 operations in lithium ion batteries[J]. Electrochimica Acta ,2015,151:429-436. [12] Hu G R,Cao J C,Peng Z D, et al . Enhanced high-voltage properties of LiCoO 2 coated with Li[Li 0.2 Mn 0.6 Ni 0.2 ]O 2 [J]. Electrochimica Acta ,2014,149:49-55. [13] Chung S H,Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Advanced Materials ,2014,26:7352-7357. [14] Jin B,Kim J U,Gu H B. Electrochemical properties of lithium-sulfur batteries[J]. Journal of Power Sources ,2003,117:148-152. [15] Manthiram A,Fu Y Z,Su Y S. Challenges and prospects of lithium sulfur batteries[J]. Accounts of Chemical Research ,2013,46(5):1125-1134. [16] Chen L,Shaw L L. Recent advances in lithium sulfur batteries[J]. Journal of Power Sources ,2014,267:770-783. [17] Ding N,Chien S W,Andy H T S. Key parameters in design of lithium sulfur batteries[J]. Journal of Power Sources ,2014,269:111-116. [18] Song J C,Choo M J,Noh H J, et al . Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries[J]. Chem. Sus. Chem. ,2014,7:3341-3346. [19] Yin Y X,Xin S,Guo Y G, et al . Lithium-sulfur batteries:Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition ,2013,52:13186-13200. [20] Li Z,Yuan L X,Yi Z Q, et al . Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode[J]. Advanced Energy Materials ,2014,4:1301473. [21] Xin S,Yin Y X ,Wan L J, et al . Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan[J]. Particle & Particle System Characterization ,2013,30:321-325. [22] Wu H B,Wei S Y,Zhang L, et al . Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J]. Chemistry-A European Journal ,2013,19:10804-10808. [23] Wang H Q,Zhang C F,Chen Z X, et al . Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries[J]. Carbon ,2015,81:782-787. [24] Chen S R,Zhai Y P,Xu G L, et al . Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery[J]. Electrochimica Acta ,2011,56:9549-9555. [25] Li X L,Cao Y L,Qi W, et al . Optimization of mesoporous carbon structures for lithium-sulfur battery applications[J]. Journal of Materials Chemistry ,2011,21:16603-16610. [26] Wang D W,Zhou G M,Li F, et al . A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries[J]. Physical Chemistry Chemical Physics ,2012,14:8703-8710. [27] Tao X Y,Chen X R,Xia Y, et al . Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A ,2013,1:3295-3301. [28] He G,Mandlmeier B,Schuster J, et al . Bimodal mesoporous carbon nanofibers with high porosity:Freestanding and embedded in membranes for lithium-sulfur batteries[J]. Chemistry of Materials ,2014,26:3879-3886. [29] Wang J,Wu Y H,Shi Z Q, et al . Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for lithium-sulfur batteries[J]. Electrochimica Acta ,2014,144:307-314. [30] Ji X L,Lee K T,Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials ,2009,8:500-506. [31] Liang C D,Dudney N J,Howe J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials ,2009,21:4724-4730. [32] Schuster J,He G,Mandlmeier B, et al . Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition ,2012,51:3591-3595. [33] Yin L C,Wang J L,Yang J, et al. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries[J]. Journal of Materials Chemistry ,2011,21:6807-6810. [34] Chung S H,Manthiram A. High-performance Li-S batteries with an ultra-light weight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters ,2014,5:1978-1983. [35] Chen J J,Zhang Q,Shi Y N, et al . A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries[J]. Physical Chemistry Chemical Physics ,2012,14:5376-5382. [36] Wang D L,Yu Y C,Zhou W D, et al . Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics ,2013,15:9051-9057. [37] Chen J J,Jia X,She Q J, et al . The preparation of nano-sulfur/MWCNTs and its electrochemical performance[J]. Electrochimica Acta ,2010,55:8062-8066. [38] Yuan L X,Yuan H P,Qiu X P, et al . Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries[J]. Journal of Power Sources ,2009,189:1141-1146. [39] Ma X Z,Jin B,Xin P M, et al . Multiwalled carbon nanotubes-sulfur composites with enhanced electrochemical performance for lithium/sulfur batteries[J]. Applied Surface Science ,2014,307:346-350. [40] Su Y S,Manthiram A. A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical Communications ,2012,48:8817-8819. [41] Li N W,Zheng M B,Lu H L, et al . High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communications ,2012,48:4106-4108. [42] Zhang J,Dong Z M,Wang X L, et al . Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries[J]. Journal of Power Sources ,2014,270:1-8. [43] Yun Y S,Le V C,Kim H G, et al . Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries[J]. Journal of Power Sources ,2014,262:79-85. [44] Wang J Z,Lu L,Choucair M, et al . Sulfur-graphene composite for rechargeable lithium batteries[J]. Journal of Power Sources ,2011,196:7030-7034. [45] Zhang C Z,Mahmood N,Yin H, et al . Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials ,2013,25:4932-4937. [46] Xu C M,Wu Y S,Zhao X Y, et al . Sulfur/three-dimensional graphene composite for high performance lithium sulfur batteries[J]. Journal of Power Sources ,2015,275:22-25. [47] Liu Y,Guo J X,Zhang J, et al . Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries[J]. Applied Surface Science ,2015,324:399-404. [48] Wang H L,Yang Y,Liang Y Y, et al . Graphene-wrappedsulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters ,2011,11:2644-2647. [49] Zhou G M,Yin L C,Wang D W, et al . Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium sulfur batteries[J]. ACS Nano ,2013,7:5367-5375. [50] Wang Y X,Huang L,Sun L C, et al . Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance[J]. Journal of Materials Chemistry ,2012,22:4744-4750. [51] Li S,Xie M,Liu J B, et al . Layer structured sulfur/expanded graphite composite as cathode for lithium battery[J]. Electrochemical and Solid-State Letters ,2011,14:A105-A107. [52] Wang J,Chen J,Konstantinov K, et al . Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries[J]. Electrochimica Acta ,2006,51:4634-4638. [53] Liang X,Wen Z Y,Liu Y, et al . Preparation and characterization of sulfur-polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries[J]. Solid State Ionics ,2011,192:347-350. [54] Fu Y Z,Manthiram A. Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C ,2012,116:8910-8915. [55] Li W Y,Zhang Q F,Zheng G Y, et al . Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Letters ,2013,13:5534-5540. [56] Guo Jin(郭锦),Zhang Mingang(张敏刚),Yan Shijian(闫时建), et al . High specific capacity composite cathode materials for lithium-sulfur batteries[J]. Energy Storage Science and Technology (储能科学与技术),2014,3(4):345-352. [57] Zhao X H,Kim J K,Ahn H J, et al . A ternary sulfur/polyaniline/carbon composite as cathode material for lithium sulfur batteries[J]. Electrochimica Acta ,2013,109:145-152. [58] Wu F,Chen J Z,Li L, et al . Improvement of rate and cycle performance by rapid polyaniline coating of a MWCNT/sulfur cathode[J]. The Journal of Physical Chemistry C ,2011,115:24411-24417. [59] Li G C,Li G R,Ye S H, et al . A polyaniline-coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries[J]. Advanced Energy Materials ,2012,2:1238-1245. [60] Zhou W D,Yu Y C ,Chen H, et al . Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Society ,2013,135:16736-16743. [61] Zhang Z A,Li Q,Lai Y Q, et al . Confine sulfur in polyaniline-decorated hollow carbon nanofiber hybrid nanostructure for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C ,2014,118:13369-13376. [62] Wu F,Wu S X,Chen R J, et al. Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters ,2010,13:A29-A31. [63] Sun M M,Zhang S C,Jiang T, et al . Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries[J]. Electrochemistry Communications ,2008,10:1819-1822. [64] Zhang Y G,Bakenov Z,Zhao Y, et al . One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries[J]. Journal of Power Sources ,2012,208:1-8. [65] Fu Y Z,Manthiram A. Enhanced cyclability of lithium-sulfur batteries by a polymer acid doped polypyrrole mixed ionic-electronic conductor[J]. Chemistry of Materials ,2012,24:3081-3087. [66] Xiao L F,Cao Y L,Xiao J, et al . A soft approach to encapsulate sulfur:Polyaniline nanotubes for lithium­sulfur batteries with long cycle life[J]. Advanced Materials ,2012,24:1176-1181. [67] Wu F,Chen J Z,Chen R J ,et al . Sulfur/polythiophene with a core/shell structure:Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries[J]. The Journal of Physics Chemical C ,2011,115:6057-6063. [68] Li J Y,Ding B,Xu G Y, et al . Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO 2 sphere cathode for advanced Li-S batteries[J]. Nanoscale ,2013,5:5743-5746. [69] Li Q,Zhang Z A,Zhang K, et al . Synthesis and electrochemical performance of TiO 2 -sulfur composite cathode materials for lithium-sulfur batteries[J]. Journal of Solid State Electrochemistry ,2013,17:2959-2965. [70] Zhang Y,Wang L Z,Zhang A Q, et al . Novel V 2 O 5 /S composite cathode material for the advanced secondary lithium batteries[J]. Solid State Ionics ,2010,181:835-838. [71] Pang Q,Kundu D,Cuisinier M, et al . Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications ,2014,5:4759. [72] Seh Z W,Li W Y,Cha J J, et al . Sulphur-TiO 2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications ,2013,4:1331. [73] Ma X Z,Jin B,Wang H Y, et al . S-TiO 2 composite cathode materials for lithium/sulfur batteries[J]. Journal of Electroanalytical Chemistry ,2015,736:127-131. [74] Li W,Hicks-Garner J,Wang J, et al . V 2 O 5 polysulfide anion barrier for long-lived Li-S batteries[J]. Chemistry of Materials ,2014,26:3403-3410. [75] Yang Z C,Guo J C,Das S K, et al . In situ synthesis of lithium sulfide-carbon composites as cathode materials for rechargeable lithium batteries[J]. Journal of Materials Chemistry A ,2013,1,1433-1440. [76] Zheng S Y,Chen Y,Xu Y H, et al . In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries[J]. ACS Nano ,2013,7:10995-11003. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[5] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[6] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[8] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[9] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[10] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[11] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[12] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[13] | Dengfeng JIANG, Yajun CHEN, Yaolong HE, Da BIAN, Hongjiu HU. Role of drying on the mechanical behavior of composite anodes [J]. Energy Storage Science and Technology, 2022, 11(3): 957-963. |
[14] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[15] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||