Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (6): 569-576.doi: 10.3969/j.issn.2095-4239.2015.06.004
• Research &development • Previous Articles Next Articles
JIN Yuhong, WANG Li, HE Xiangming
Received:
2015-05-14
Online:
2015-12-19
Published:
2015-12-19
CLC Number:
JIN Yuhong, WANG Li, HE Xiangming. Research progress on lithium-selenium batteries[J]. Energy Storage Science and Technology, 2015, 4(6): 569-576.
[1] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [2] Sun Y K,Myung S T,Park B C,Prakash J,Belharouak I,Amine K. High-energy cathode material for long-life and safe lithium batteries[J]. Nat. Mater. ,2009,8(4):320-324. [3] Poizot P,Laruelle S,Grugeon S,Dupont L,Tarascon J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature ,2000,407(6803):496-499. [4] Goodenough J B,Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater. ,2010,22(3):587-603. [5] Ji X,Nazar L. Advances in Li-S batteries[J]. J. Mater. Chem. ,2010,20(44):9821-9826. [6] Bruce P G,Freunberger S,Hardwick L,Tarascon J M. Li-O 2 and Li-S batteries with high energy storage[J]. Nat. Mater. ,2012,11(1):19-29. [7] Barghamadi M,Kapoor A,Wen C. A review on Li-S batteries as a high efficiency rechargeable lithium battery[J]. J. Electrochem. Soc. ,2013,160(8):A1256-A1263. [8] Evers S,Nazar L. New approaches for high energy density lithium-sulfur battery cathodes[J]. ACC Chem. Res. ,2013,46(5):1135-1143. [9] Ji X,Lee K T,Nazar L. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater. ,2009,8(6):500-506. [10] Jayaprakssh N,Shen J,Moqanty S,Corona A,Archer L A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem. Int. Ed. ,2011,123(26):6026-6030. [11] She Z W,Li W,Cha J,Zheng G,Yang Y,McDowell M,Hsu P,Cui Y. Sulphur-TiO 2 yolk-shell nano architecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nat. Commun. ,2013,4:1331-1336. [12] Liang X,Wen Z,Liu Y,Wu M,Jin J,Zhang H,Wu X. Improved cycling performances of lithium sulfur batteries with LiNO 3 -modified electrolyte[J]. J. Power Sources ,2011,196(22):9839-9843. [13] Suo L,Hu Y S,Li H,Armand M,Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat. Commun. ,2014,4:1481-1489. [14] Zhou G,Li L,Wang D W,Shan X Y,Pei S,Cheng H M. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Adv. Mater. ,2015,27(4):641-647. [15] Yao H,Yan K,Li W,Zheng G,Kong D,She Z W,Narasimhan V,Liang Z,Cui Y. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface[J]. Energy Environ. Sci. ,2014,7(10):3381-3390. [16] Yang C P,Yin Y X,Guo Y G. Elemental selenium for electrochemical energy storage[J]. J. Phys. Chem. Lett. ,2015,6(2):256-266. [17] Abouimrane A,Dambournet D,Chapman K,Chupas P,Weng W,Amine K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode[J]. J. Am. Chem. Soc. ,2012,134(10):4505-4508. [18] Cui Y,Abouimrane A,Sun C J,Ren Y,Amine K. Li-Se battery:Absence of lithium polyselenides in carbonate based electrolyte[J]. Chem. Commun. ,2014,50(42):5576-5579. [19] Cui Y,Abouimrane A,Lu J,Bolin T,Ren Y,Weng W,Sun C,Maroni V,Heald S,Amine K. Lithiation mechanism of Li/SeS x ( x =0~7) batteries determined by in situ synchrotron X ray diffraction and X ray absorption spectroscopy[J]. J. Am. Chem. Soc. ,2013,135(21):8047-8056. [20] Yang C,Xin S,Yin Y,Ye H,Zhang J,Guo Y. An advanced selenium- carbon cathode for rechargeable lithium-selenium batteries[J]. Angew. Chem. Int. Ed. ,2013,52(32):8363-8367. [21] Luo C,Xu Y,Zhu Y,Liu Y,Zheng S,Liu Y,Langrock S,Wang C. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity[J]. ACS Nano ,2013,7(9):8003-8010. [22] Zeng L,Zeng W,Jiang Y,Wei X,Li W,Yang C,Zhu Y,Yu Y. A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li-Se and Na-Se batteries[J]. Adv. Energy. Mater. ,2015,5(4):doi: 10.1002/aenm.201401377. [23] Yi Z,Yuan L,Sun D,Li Z,Wu C,Yang W,Wen Y,Shan B,Huang Y. High-performance lithium-selenium batteries promoted by heteroatom-doped microporous carbon[J]. J. Mater. Chem. A ,2015,3(6):3059-3065. [24] Wang X,Zhang Z,Qu Y,Wang G,Lai Y,Li J. Solution-based synthesis of multi-walled carbon nanotube/selenium composites for high performance lithium-selenium battery[J]. J. Power Sources ,2015,287:247-252. [25] Zhang J,Fan L,Zhu Y,Xu Y,Liang J,Wei D,Qian Y. Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance[J]. Nano Scale ,2014,6(21):12952-12957. [26] Zhang Z,Yang X,Guo Z,Qu Y,Li J,Lai Y. Selenium/carbon-rich core-shell composites as cathode materials for rechargeable lithium- selenium batteries[J]. J. Power Sources ,2015,279:88-93. [27] Jiang S,Zhang Z,Lai Y,Qu Y,Wang X,Li J. Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium-selenium batteries with high rate performance and cycling stability[J]. J. Power Sources ,2014,267:394-404. [28] Lai Y,Gan Y,Zhang Z,Chen W,Li J. Metal-organic frameworks-derived mesoporous carbon for high performance lithium-selenium battery[J]. Electrochim. Acta ,2014,146:134-141. [29] Zhang J,Zhang Z,Li Q,Qu Y,Jiang S. Selenium encapsulated into interconnected polymer-derived porous carbon nanofiber webs as cathode materials for lithium-selenium batteries[J]. J. Electrochem. Soc. ,2014,161(14):A2093-A2098. [30] Peng X,Wang L,Zhang X,Gao B,Fu J,Xiao S,Huo K,Chu P. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium-selenium battery cathode[J]. J. Power Sources ,2015,288:214-220. [31] Li J,Zhao X,Zhang Z,Lai Y. Facile synthesis of hollow carbonized polyaniline spheres to encapsulate selenium for advanced rechargeable lithium-selenium batteries[J]. J. Alloys Compd. ,2015,619:794-799. [32] Liu L,Wei Y,Zhang C,Zhang C,Li X,Wang J,Ling L,Qiao W,Long D. Enhanced electrochemical performances of mesoporous carbon microsphere/selenium composites by controlling the pore structure and nitrogen doping[J]. Electrochim. Acta ,2015,153:140-148. [33] Lai Y,Yang F,Zhang Z,Jiang S,Li J. Encapsulation of selenium in porous hollow carbon spheres for advanced lithium-selenium batteries[J]. RSC Adv. ,2014,4(74):39312-39315. [34] Li Z,Yuan L,Yi Z,Liu Y,Huang Y. Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries[J]. Nano Energy ,2014,9:229-236. [35] Qu Y,Zhang Z,Jiang S,Wang X,Lai Y,Liu Y,Li J. Confining selenium in nitrogen-containing hierarchical porous carbon for high-rate rechargeable lithium-selenium batteries[J]. J. Mater. Chem. A ,2014,2(31):12255-12261. [36] Liu Y,Si L,Zhou X,Liu X,Xu Y,Bao J,Dai Z. Selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries[J]. J. Chem. Mater. A ,2014,2(42):17735-17739. [37] Jiang Y,Ma X,Feng J,Xiong S. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries[J]. J. Mater. Chem. A ,2015,3(8):4539-4546. [38] Wang H,Li S,Chen Z,Liu H,Guo Z. A novel type of one-dimensional organic selenium containing fiber with superior performance for lithium-selenium and sodium-selenium batteries[J]. RSC Adv. ,2014,4(106):61673-61678. [39] Qu Y,Zhang Z,Lai Y,Liu Y,Li J. A bimodal porous carbon with high surface area supported selenium cathode for advanced Li-Se batteries[J]. Solid State Ionics ,2015,274:71-76. [40] Ye H,Yin Y X,Zhang S F,Guo Y G. Advanced Se-C nanocomposites:A bifunctional electrode material for both Li-Se and Li-ion batteries[J]. J. Mater. Chem. A ,2014,2(33):13293-13298. [41] Zhang Z,Yang X,Wang X,Li Q,Zhang Z. TiO 2 -Se composites as cathode material for rechargeable lithium-selenium batteries[J]. Solid State Ionics ,2014,260:101-106. [42] Han K,Liu Z,Ye H,Dai F. Flexible self-standing graphene-Se@CNT composite film as a binder-free cathode for rechargeable Li-Se batteries[J]. J. Power Sources ,2014,263:85-89. [43] Han K,Liu Z,Shen J,Lin Y,Dai F,Ye H. A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture[J]. Adv. Funct. Mater. ,2015,25(3):455-463. [44] Zhang J,Xu Y,Fan L,Zhu Y,Liang J,Qian Y. Graphene- encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li-Se batteries[J]. Nano Energy ,2015,13:592-600. [45] Lee J T,Kim H,Oschatz M,Lee D C,Wu F,Lin H T,Zdyrko B,Cho W,Kaskel S,Yushin G. Micro-and mesoporous carbide-derived carbon-selenium cathodes for high-performance lithium selenium batteries[J]. Adv. Energy Mater. ,2015,5(1):doi: 10.1002/aenm. 201400981. [46] Zhang Z,Zhang Z,Zhang K,Yang X,Li Q. Improvement of electrochemical performance of rechargeable lithium-selenium batteries by inserting a free-standing carbon interlayer[J]. RSC Adv. ,2014,4(30):15489-15492. [47] Fang R,Zhou G,Pei S,Li F,Cheng H M. Localized polyselenides with a graphene-coated polymer separator for high rate and ultralong life lithium-selenium batteries[J]. Chem. Commun. ,2015,51(17):3667-3670. |
[1] | SHI Shuang, LYU Nawei, MA Jingxuan, YIN Kangyong, SUN Lei, ZHANG Ning, JIN Yang. Comparative study on the effectiveness of different types of gas detection on overcharge safety early warning of lithium iron phosphate battery energy storage compartment [J]. Energy Storage Science and Technology, 2022, (): 1-11. |
[2] | GUO Kaiqiang, CHE Haiying, ZHANG Haoran, LIAO Jianping, ZHOU Huang, ZHANG Yunlong, CHEN Hangda, SHEN Zhan, LIU Haimei, MA Zi-feng. Preparation and Characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, (): 1-10. |
[3] | LIU Tao, QIU Daping, XIA Jiannian, DENG Jiahong, CHEN Zhiyu, WEI Jinying, LI Min, YANG Ru. Structure and properties of cathode materials for ion batteries [J]. Energy Storage Science and Technology, 2019, 8(S1): 1-17. |
[4] | JIN Yuan, HAN Tian, HAN Xin, KANG Xin. A review on thermal management techniques for lithium-ion battery [J]. Energy Storage Science and Technology, 2019, 8(S1): 23-31. |
[5] | XU Min, LIU Zhongcai, YAN Xiao, HUANG Bixiong, WANG Ying, WANG Jionggeng. Online detection method for incremental capacity internal resistance consistency [J]. Energy Storage Science and Technology, 2019, 8(6): 1197-1203. |
[6] | WANG Hewu, ZHANG Yajun, LI Cheng, LI Weifeng, OUYANG Minggao. Venting process of lithium-ion power battery during thermal runaway under medium state of charge [J]. Energy Storage Science and Technology, 2019, 8(6): 1076-1081. |
[7] | CONG Longda, XING Yalan, JIN Baoyi, WU Hao, ZHAO Guangjin, ZHANG Shichao. Preparation and electrochemical performance of MnFe2O4 with porous rod structure based on micro-emulsion synthesis [J]. Energy Storage Science and Technology, 2019, 8(6): 1132-1136. |
[8] | GUO Xin, ZHAO Yefei, ZHENG Junsheng, QIN Nan, DAI Ningning. Design of 48 V automobile start-stop power system based on lithium ion capacitor [J]. Energy Storage Science and Technology, 2019, 8(6): 1159-1164. |
[9] | DENG Zhe, HUANG Zhenyu, LIU Lei, HUANG Yunhui, SHEN Yue. Applications of ultrasound technique in characterization of lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. |
[10] | SHEN Jinran, GUO Cuijing, CHEN He, ZHOU Shuqin, XU Bin, GUAN Yibiao. Synthesis and lithium storage property of high-performance N-doped reduced graphene oxide [J]. Energy Storage Science and Technology, 2019, 8(6): 1137-1144. |
[11] | PEI Fenglai, HOU Mingtao, HE Jilong, WU Bo, CHEN Fengxiang. Modeling of air compressor for proton exchange membrane fuel cell [J]. Energy Storage Science and Technology, 2019, 8(6): 1247-1252. |
[12] | XIE Hongjia, SUN Jie, LI Jigang, ZHOU Tian, WEI Shouping, YI Zhihao. Research of leaked toxics from Li-ion battery electrical heat triggering thermal runaway [J]. Energy Storage Science and Technology, 2019, 8(6): 1082-1088. |
[13] | CHEN Dehai, MA Yuan, PAN Weichi. Improved state-of-the-art look-up table method for charge state estimation of PSO-RBF model [J]. Energy Storage Science and Technology, 2019, 8(6): 1190-1196. |
[14] | JI Hongxiang, QI Wenbin, TIAN Feng, TIAN Mengyu, JIN Zhou, YAN Yong, ZHANG Hua, WU Yida, ZHAN Yuanjie, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Aug.01, 2019 to Sep. 30, 2019) [J]. Energy Storage Science and Technology, 2019, 8(6): 1271-1284. |
[15] | LIANG Jumei, GUO Yumeng, WANG Mingxuan, XILI Dege, ZHANG Lijuan. Recent research progress of tin oxide as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 813-820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||