Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (3): 258-267.doi: 10.3969/j.issn.2095-4239.2016.03.002
Previous Articles Next Articles
QIU Shen, WU Xianyong, LU Haiyan, AI Xinping, YANG Hanxi, CAO Yuliang
Received:
2016-03-18
Revised:
2016-03-30
Online:
2016-05-01
Published:
2016-05-01
QIU Shen, WU Xianyong, LU Haiyan, AI Xinping, YANG Hanxi, CAO Yuliang. Research progress of carbon-based sodium-storage anode materials[J]. Energy Storage Science and Technology, 2016, 5(3): 258-267.
[1] HE H N,WANG H Y,TANG Y G,et al. Current studies of anode materials for sodium-ion battery[J]. Progress in Chemistry,2014,26:572-581.
[2] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958.
[3] PALOMARES V,SERRAS P,VILLALUENGA I,et al. Na-ion batteries recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science,2012,5:5884-5901.
[4] ELLIS B L,NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion In Solid State and Materials Science,2012,16:168-177.
[5] QIAN J,ZHOU M,CAO Y,et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Mater.,2012,2:410-414.
[6] YUAN D D,LIANG X M,WU L,et al. A honeycomb-layered Na3Ni2SbO6:A High-rate and cycle-stable cathode for sodium-ion batteries[J].. Advanced Materials,2014,26:6301-6306.
[7] WU X,LUO Y,SUN M,et al. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries[J]. Nano Energy,2015,13:117-123.
[8] FANG Y J,XIAO L F,QIAN J F,et al. Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries[J]. Nano Letter,2014,14:3539-3543.
[9] FANG Y,XIAO L,AI X,et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Advanced Materials,2015,27(39):5895-5900.
[10] CAO Y,XIAO L,SUSHKO M L,et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letter,2012,12:3783-3787.
[11] DING J,WANG H,LI Z,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7:11004-11015.
[12] TANG K,FU L,WHITE R J,YU L,et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials,2012,2:873-877.
[13] XIAO L,CAO Y,XIAO J,WANG W,et al. High capacity reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications[J]. Chemical Communication,2012,48:3321-3323.
[14] WU L,HU X H,QIAN J F,et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries[J]. Energy & Environmental Science,2014,7:323-328.
[15] LEE J,CHEN Y M,ZHU Y,VOGT B D. Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:21011-21018.
[16] LIU H,CAO K,XU X,et al. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(21):11239-11245..
[17] WU L,LU H Y,XIAO L F,et al. A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:16424-16428.
[18] QIAN J F,XIONG Y,CAO Y L,et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity cycle-stable anode of Na-ion batteries[J]. Nano Letter,2014,14:1865-1869.
[19] IIJIMA S. Helical microtubes of graphite carbon[J]. Nature,1991,354:56-58.
[20] TUINSTRA F,KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics,1970,53:1126-1130.
[21] SANDIP N,ELENA B,ITKIS M E,et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society,2006,128(24):7720-7721.
[22] RAFIEE M A. Graphene[J]. Dissertations & Theses Gradworks,2011,442:282-286.
[23] WU Y P,JIANG C,WAN C. Modified natural graphite as anode material for lithium ion batteries[J]. Journal of Power Sources,2002,111:329-334.
[24] MCMILLAN R,SLEGR H,SHU Z X,WANG W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources,1999,s 81/82:20-26.
[25] ASHER R C,WILSON S A. Lamellar compound of sodium with graphite[J]. Nature,1958,181:409-410.
[26] GE P,FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28/29/30:1172-1175.
[27] WEN Y,HE K,ZHU Y J,et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communication,2014,5:doi:10.1038/ncomms5033.
[28] JACHE B,ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53:10169-10173.
[29] WANG Y.X,CHOU S L,LIU H K,et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon,2013,57:202-208.
[30] DAVID L,SINGH G. Reduced graphene oxide paper electrode:Opposing effect of thermal annealing on Li and Na cyclability[J]. Journal of Physical Chemistry C,2014,118:28401-28408.
[31] DOEFF M M,MA Y,VISCO S J,et al. Electrochemical insertion of sodium into carbon[J]. Journal of Electrochemical Society,1993,140:L169-L170.
[32] ALCÁNTARA R,MATEOS J M J,TIRADO J L. Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000℃[J]. Journal of Electrochemical Society,2002,149:A201-A205.
[33] LUO W,SHEN F,BOMMIER C,et al. Na-ion battery anodes:Materials and electrochemistry[J]. Accounts of Chemical Research,2016,49(2):231-240.
[34] STEVENS D,DAHN J. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of Electrochemical Society,2000,147:1271-1273.
[35] ALCÁNTARA R,LAVELA P,ORTIZ G F,et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters,2005,8:A222-A225.
[36] WENZEL S,HARA T,JANEK J,et al. Room-temperature sodium-ion batteries:Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environmental & Science,2011,4:3342-3345.
[37] CHEN T,LIU Y,PAN L,et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A,2014,2:4117-4121.
[38] LI Y,XU S,WU X,et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Jormal of Materials Chemistry A,2015,3:71-77.
[39] XIAO L,CAO Y,HENDERSON W A,et al. Hard carbon nanoparticles as high-capacity high-stability anodic materials for Na-ion batteries[J]. Nano Energy,2016,19:279-288.
[40] LUO W,SCHARDT J,BOMMIER C,et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A,2013,1:10662-10666.
[41] LOTFABAD E M,DING J,CUI K,et al. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano,2014,8:7115-7129.
[42] DING J,WANG H,LI Z,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7:11004-11015.
[43] DING J,WANG H,LI Z,et al. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors[J]. Energy Environmental & Science,2015,8:941-955.
[44] JIN J,YU B J,SHI Z Q,et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources,2014,272:800-807.
[45] LI H,SHEN F,LUO W,et al. Carbonized leaf membrane with anisotropic surfaces for sodium ion battery[J]. ACS Applied Materials & Interfaces,2016,8(3):2204-2210.
[46] WU L,BUCHHOLZ D,VAALMA C,et al. Apple biowaste-derived hard carbon as powerful anode material for Na-ion batteries[J]. Chem. Electro. Chem.,2016,27:231-233.
[47] SUN N. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A,2015,3:20560-20566.
[48] LI Y A. Superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,16:4307-4324.
[49] WANG Z,LONG Q,YUAN L,et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon,2013,55:328-334.
[50] LIJUN F,KUN T,KEPENG S,et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale,2014,6:1384-1389.
[51] WANG Z. N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature[J]. RSC Advance,2014,4:62673-62677.
[52] QIE L,CHEN W,XIONG X,et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science,2015,2(12):doi:10.1002/advs.201500195.
[53] LI W. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy Environmental & Science,2015,8(10):2916-2921.
[54] XU D,CHEN C,XIE J,et al. Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials,2016,6(6):doi:10.1002/aenm.201501929.
[55] LI Y,WANG Z,LI L,et al. Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries[J]. Carbon,2015,99:556-563.
[56] KOMABA S,MURATA W,ISHIKAWA T,et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials,2011,21:3859-3867.
[57] ZHANG B,GHIMBEU C M,LABERTY C,et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials,2015,6(1):doi:10.1002/ aenm.201501588.
[58] BOMMIER C,SURTA T W,DOLGOS M,JI X. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letter,2015,15:5888-5892. [1] HE H N,WANG H Y,TANG Y G,et al. Current studies of anode materials for sodium-ion battery[J]. Progress in Chemistry,2014,26:572-581. [2] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958. [3] PALOMARES V,SERRAS P,VILLALUENGA I,et al. Na-ion batteries recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science,2012,5:5884-5901. [4] ELLIS B L,NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion In Solid State and Materials Science,2012,16:168-177. [5] QIAN J,ZHOU M,CAO Y,et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Mater.,2012,2:410-414. [6] YUAN D D,LIANG X M,WU L,et al. A honeycomb-layered Na3Ni2SbO6:A High-rate and cycle-stable cathode for sodium-ion batteries[J].. Advanced Materials,2014,26:6301-6306. [7] WU X,LUO Y,SUN M,et al. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries[J]. Nano Energy,2015,13:117-123. [8] FANG Y J,XIAO L F,QIAN J F,et al. Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries[J]. Nano Letter,2014,14:3539-3543. [9] FANG Y,XIAO L,AI X,et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Advanced Materials,2015,27(39):5895-5900. [10] CAO Y,XIAO L,SUSHKO M L,et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letter,2012,12:3783-3787. [11] DING J,WANG H,LI Z,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7:11004-11015. [12] TANG K,FU L,WHITE R J,YU L,et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials,2012,2:873-877. [13] XIAO L,CAO Y,XIAO J,WANG W,et al. High capacity reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications[J]. Chemical Communication,2012,48:3321-3323. [14] WU L,HU X H,QIAN J F,et al. Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries[J]. Energy & Environmental Science,2014,7:323-328. [15] LEE J,CHEN Y M,ZHU Y,VOGT B D. Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries[J]. ACS Applied Materials & Interfaces,2014,6:21011-21018. [16] LIU H,CAO K,XU X,et al. Ultrasmall TiO2 nanoparticles in situ growth on graphene hybrid as superior anode material for sodium/lithium ion batteries[J]. ACS Applied Materials & Interfaces,2015,7(21):11239-11245.. [17] WU L,LU H Y,XIAO L F,et al. A tin(II) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries[J]. Journal of Materials Chemistry A,2014,2:16424-16428. [18] QIAN J F,XIONG Y,CAO Y L,et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity cycle-stable anode of Na-ion batteries[J]. Nano Letter,2014,14:1865-1869. [19] IIJIMA S. Helical microtubes of graphite carbon[J]. Nature,1991,354:56-58. [20] TUINSTRA F,KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics,1970,53:1126-1130. [21] SANDIP N,ELENA B,ITKIS M E,et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society,2006,128(24):7720-7721. [22] RAFIEE M A. Graphene[J]. Dissertations & Theses Gradworks,2011,442:282-286. [23] WU Y P,JIANG C,WAN C. Modified natural graphite as anode material for lithium ion batteries[J]. Journal of Power Sources,2002,111:329-334. [24] MCMILLAN R,SLEGR H,SHU Z X,WANG W. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources,1999,s 81/82:20-26. [25] ASHER R C,WILSON S A. Lamellar compound of sodium with graphite[J]. Nature,1958,181:409-410. [26] GE P,FOULETIER M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28/29/30:1172-1175. [27] WEN Y,HE K,ZHU Y J,et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communication,2014,5:doi:10.1038/ncomms5033. [28] JACHE B,ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53:10169-10173. [29] WANG Y.X,CHOU S L,LIU H K,et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon,2013,57:202-208. [30] DAVID L,SINGH G. Reduced graphene oxide paper electrode:Opposing effect of thermal annealing on Li and Na cyclability[J]. Journal of Physical Chemistry C,2014,118:28401-28408. [31] DOEFF M M,MA Y,VISCO S J,et al. Electrochemical insertion of sodium into carbon[J]. Journal of Electrochemical Society,1993,140:L169-L170. [32] ALCÁNTARA R,MATEOS J M J,TIRADO J L. Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below [33] LUO W,SHEN F,BOMMIER C,et al. Na-ion battery anodes:Materials and electrochemistry[J]. Accounts of Chemical Research,2016,49(2):231-240. [34] STEVENS D,DAHN J. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of Electrochemical Society,2000,147:1271-1273. [35] ALCÁNTARA R,LAVELA P,ORTIZ G F,et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters,2005,8:A222-A225. [36] WENZEL S,HARA T,JANEK J,et al. Room-temperature sodium-ion batteries:Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environmental & Science,2011,4:3342-3345. [37] CHEN T,LIU Y,PAN L,et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A,2014,2:4117-4121. [38] LI Y,XU S,WU X,et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Jormal of Materials Chemistry A,2015,3:71-77. [39] XIAO L,CAO Y,HENDERSON W A,et al. Hard carbon nanoparticles as high-capacity high-stability anodic materials for Na-ion batteries[J]. Nano Energy,2016,19:279-288. [40] LUO W,SCHARDT J,BOMMIER C,et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A,2013,1:10662-10666. [41] LOTFABAD E M,DING J,CUI K,et al. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano,2014,8:7115-7129. [42] DING J,WANG H,LI Z,et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7:11004-11015. [43] DING J,WANG H,LI Z,et al. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors[J]. Energy Environmental & Science,2015,8:941-955. [44] JIN J,YU B J,SHI Z Q,et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources,2014,272:800-807. [45] LI H,SHEN F,LUO W,et al. Carbonized leaf membrane with anisotropic surfaces for sodium ion battery[J]. ACS Applied Materials & Interfaces,2016,8(3):2204-2210. [46] WU L,BUCHHOLZ D,VAALMA C,et al. Apple biowaste-derived hard carbon as powerful anode material for Na-ion batteries[J]. Chem. Electro. Chem.,2016,27:231-233. [47] SUN N. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A,2015,3:20560-20566. [48] LI Y A. Superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,16:4307-4324. [49] WANG Z,LONG Q,YUAN L,et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon,2013,55:328-334. [50] LIJUN F,KUN T,KEPENG S,et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale,2014,6:1384-1389. [51] WANG Z. N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature[J]. RSC Advance,2014,4:62673-62677. [52] QIE L,CHEN W,XIONG X,et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science,2015,2(12):doi:10.1002/advs.201500195. [53] LI W. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy Environmental & Science,2015,8(10):2916-2921. [54] XU D,CHEN C,XIE J,et al. Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials,2016,6(6):doi:10.1002/aenm.201501929. [55] LI Y,WANG Z,LI L,et al. Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries[J]. Carbon,2015,99:556-563. [56] KOMABA S,MURATA W,ISHIKAWA T,et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials,2011,21:3859-3867. [57] ZHANG B,GHIMBEU C M,LABERTY C,et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials,2015,6(1):doi:10.1002/ aenm.201501588. [58] BOMMIER C,SURTA T W,DOLGOS M,JI X. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letter,2015,15:5888-5892. |
[1] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[5] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[6] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[7] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[8] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[9] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[10] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[11] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[12] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Experimental study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(5): 1314-1321. |
[13] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[14] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[15] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||