Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (5): 1008-1025.doi: 10.12028/j.issn.2095-4239.2017.00022
Previous Articles Next Articles
WANG Qiyu, WANG Shuo, ZHANG Jienan, ZHENG Jieyun, YU Xiqian, LI Hong
Received:
2017-06-01
Revised:
2017-06-15
Online:
2017-09-01
Published:
2017-09-01
WANG Qiyu, WANG Shuo, ZHANG Jienan, ZHENG Jieyun, YU Xiqian, LI Hong. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025.
[1] SUN Y K. Future of electrochemical energy storage[J]. ACS Energy Letters, 2017, 2(3): 716-716. [2] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science. 2011, 4(9): 3243-3262. [3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. [4] SCHLASZA C, OSTERTAG P, CHRENKO D, et al. Review on the aging mechanisms in Li-ion batteries for electric vehicles based on the FMEA method[C]. Transportation Electrification Conference and Expo. IEEE, 2014: 1-6. [5] KOKSBANG R, BARKER J, SHI H, et al. Cathode materials for lithium rocking chair batteries[J]. Solid State Ionics, 1996, 84(1-2): 1-21. [6] 李伟善, 邱仕洲. 锂离子电池容量衰减的原因分析[J]. 电池工业, 2001, 6(1): 21-24. LI Weishan, QIU Shizhou.Causes for capacity decrease of Li ion batteries[J]. Chinese Battery Industry, 2001, 6(1): 21-24. [7] WOHLFAHRT-MEHRENS M, VOGLER C, GARCHE J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources, 2004, 127(1-2): 58-64. [8] GUMMOW R J, KOCK A D, THACKERAY M M. Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells[J]. Solid State Ionics, 1994, 69(1): 59-67. [9] THACKERAY M M, SHAOHORN Y, KAHAIAN A J, et al. Structural fatigue in spinel electrodes in high voltage (4 V) Li/LixMn2O4 cells[J]. Electrochemical and Solid-State Letters, 1998, 1(1): 7-9. [10] LEE E S, NAM K W, HU E, et al. Influence of cation ordering and lattice distortion on the charge-discharge behavior of LiMn1.5Ni0.5O4 Spinel between 5.0 and 2.0 V[J]. Chemistry of Materials, 2015, 24(18): 3610-3620. [11] WANG H, JANG Y I, HUANG B, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries[J]. Journal of the Electrochemical Society. 1999, 146(2): 473-480. [12] ARORA P, WHITE RE, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998,145(10): 3647-3667. [13] BOUKAMP B A, LESH G C, HUGGINS R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of The Electrochemical Society. 1981,128(4): 725-729. [14] 罗飞, 褚赓, 黄杰,等. 锂离子电池基础科学问题(Ⅷ)—负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163. LUO Fei, CHU Geng, HUANG Jie, et al. Fundamental scientific aspects of lithium batteries (Ⅷ) —Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163. [15] SLOOP S E, PUGH J K, WANG S, et al. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical and Solid-State Letters, 2004, 4(4): A42-A44. [16] 刘亚利, 吴娇杨, 李泓. 锂离子电池基础科学问题(Ⅸ)—非水液体电解质材料[J]. 储能科学与技术, 2014, 3(3): 262-282. LIU Yali, WU Jiaoyang, LI Hong. Fundamental scientific aspects of lithium ion batteries (Ⅸ) —Nonaqueous electrolyte materials[J].. Energy Storage Science and Technology, 2014, 3(3): 262-282. [17] MURPHY S J, GRIGAHCÈNE A, NIEMCZURA E, et al. Corrosion of lithium-ion battery current collectors[J]. Journal of the Electrochemical Society, 1999, 146(2): 448-456. [18] XING Y, WILLIARD N, TSUI K L, et al. A comparative review of prognostics-based reliability methods for Lithium batteries[C]. Prognostics and System Health Management Conference. IEEE, 2011: 1-6. [19] 阚永春. 富锂锰基镍锰钴氧化物正极材料电压衰减机理的研究[D]. 合肥:中国科学技术大学, 2015. KAN Yongchun.Voltage fade mechanism study of lithium- manganese-rich nickel manganese cobalt oxides[D]. Hefei: University of Science and Technology of China, 2015. [20] SANTHANAGOPALAN S, RAMADASS P, ZHANG J. Analysis of internal short-circuit in a lithium ion cell [J]. Journal of Power Sources, 2009, 194(1): 550-557. [21] WU M S, CHIANG P C J, LIN J C, et al. Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests-short-circuit tests[J]. Electrochimica Acta, 2004, 49(11): 1803-1812. [22] GREVE L, FEHRENBACH C. Mechanical testing and macro- mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells[J]. Journal of Power Sources, 2012, 214(4): 377-385. [23] PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19): 8147-8153. [24] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochimica Acta, 2006, 51(25): 5334-5340. [25] KIM S H, CHOI K H, CHO S J, et al. Mechanically compliant and lithium dendrite growth-suppressing composite polymer electrolytes for flexible lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(16): 4949-4955. [26] AURBACH D, ZINIGRAD E, COHEN Y, et al. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics, 2002, 148(3-4): 405-416. [27] GUO R, LU L, OUYANG M, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248. [28] 颜雪冬, 马兴立, 李维义, 等. 浅析软包装锂离子电池胀气问题[J]. 电源技术, 2013, 37(9): 1536-1538. YAN Xuedong, MA Xingli, LI Weiyi, et al. Analysis of swollen problem in soft packing lithium-ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(9): 1536-1538. [29] 黄丽, 金明钢, 蔡惠群, 等. 聚合物锂离子电池不同化成电压下产生气体的研究[J]. 电化学, 2003, 9(4): 387-392. HUANG Li , JIN Minggang , CAI Huiqun, et al. Study on the gas generation in different charging voltage during formation process in polymer lithium-ion battery[J]. Electrochemistry, 2003, 9(4): 387-392. [30] 陈益奎, 张世杰, 史鹏飞, 等. 聚合物锂离子蓄电池化成气体自动消失现象[J]. 电源技术, 2006, 30(12): 964-967. CHEN Yikui, ZHANG Shijie, SHI Pengfei, et al. Gas disappearing during polymer lithium battery's formation[J]. Chinese Journal of Power Sources, 2006, 30(12): 964-967. [31] YANG L, TAKAHASHI M, WANG B. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling[J]. Electrochimica Acta, 2006, 51(16): 3228-3234. [32] 徐淑银, 刘燕燕, 高飞, 等. 钛酸锂储能电池胀气机理研究进展[J]. 硅酸盐学报, 2015, 43(5): 657-664. XU Shuyin, LIU Yanyan, GAO Fei, et al. Development of gas generation in Li4Ti5O12-based stationary batteries[J]. Journal of The Chinese Ceramic Society, 2015, 43(5): 657-664. [33] KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, s81/82(9): 715-719. [34] WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208(24): 210-224. [35] JHU C Y, WANG Y W, WEN C Y, et al. Thermal runaway potential of LiCoO2, and Li(Ni1/3Co1/3Mn1/3)O2, batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100(4): 127-131. [36] SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. [37] THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. [38] LAMB J, ORENDORFF C J. Evaluation of mechanical abuse techniques in lithium ion batteries[J]. Journal of Power Sources, 2014, 247(2): 189-196. [39] 欧阳陈志, 梁波, 刘燕平, 等. 锂离子动力电池热安全性研究进展[J]. 电源技术, 2014, 38(2): 382-385. OUYANG Chenzhi, LIANG Bo, LIU Yan-ping, et al. Progress of thermal safety characteristics batteries[J]. Chinese Journal of Power Sources, 2014, 38(2): 382-385. [40] MCSHANE S J, HLAVAC M, BERTNESS K. Method and apparatus for detection and control of thermal runaway in a battery under charge: US5574355[P]. 1996. [41] 平平. 锂离子电池热失控与火灾危险性分析及高安全性电池体系研究[D]. 合肥:中国科学技术大学, 2014. PING Ping. Lithium ion battery thermal runaway and fire risk analysis and the development on the safer battery system [D]. Hefei: University of Science and Technology of China, 2014. [42] PARK J K. Principles and applications of lithium secondary batteries[M]. New York: WILEY-VCH, 2012. [43] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A Review[J]. Chem. Rev., 2017. [44] 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 6: 607-616. ZHANG Jianbo, SU Laisuo, LI Xinyu, et al. Lithium plating identification from degradation behaviors of lithium-ion cells[J]. Journal of Electrochemistry, 2016, 6: 607-616. [45] 李文俊, 褚赓, 彭佳悦,等. 锂离子电池基础科学问题(Ⅻ)—表征方法[J]. 储能科学与技术, 2014, 3(6): 642-667. LI Wenju, CHU Geng, PENG Jiayue, et al. Fundamental scientific aspects of lithium batteries(Ⅻ) —Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667. [46] 凌仕刚, 吴娇杨, 张舒, 等. 锂离子电池基础科学问题(Ⅻ)—电化学测量方法[J]. 储能科学与技术, 2015, 4(1): 83-103. LING Shigang, WU Jiaoyang, ZHANG Shu, et al. Fundamental scientific aspects of lithium ion batteries(Ⅻ) —Electrochemical measurement[J]. Energy Storage Science and Technology, 2015, 4(1): 83-103. [47] WALDMANN T, ITURRONDOBEITIA A, KASPER M, et al. Review—Post-mortem analysis of aged lithium-ion batteries: Disassembly methodology and physico-chemical analysis techniques[J]. Journal of The Electrochemical Society, 2016,163(10): A2149- A2164. [48] CASTAING R, MOREAU P, REYNIER Y, et al. NMR quantitative analysis of solid electrolyte interphase on aged Li-ion battery electrodes[J]. Electrochimica Acta, 2015, 155: 391-395. [49] YUFIT V, SHEARING P, HAMILTON R W, et al. Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography[J]. Electrochemistry Communications, 2011, 13(6): 608-610. [50] FINEGAN D P, SCHEEL M, ROBINSON J B, et al. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 30912 . [51] SENYSHYN A, MÜHLBAUER M J, NIKOLOWSKI K, et al. “In-operando” neutron scattering studies on Li-ion batteries[J]. Journal of Power Sources, 2012, 203(203): 126-129. [52] GONG Y, ZHANG J, JIANG L, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017: 4274-4277. [53] SHI J L, ZHANG J N, HE M, et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20138-20146. [54] 沈馨, 张睿, 程新兵,等. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432. SHEN Xin, ZHANG Rui, CHENG Xinbing, et al. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites[J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. [55] BLOOM I, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of Power Sources, 2005,139(1-2): 295-303. [56] WANG T, PEI L, WANG T, et al. Capacity-loss diagnostic and life-time prediction in lithium-ion batteries: Part 1. Development of a capacity-loss diagnostic method based on open-circuit voltage analysis[J]. Journal of Power Sources, 2016,301: 187-193. [57] BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. [58] 刘文刚, 周波, 王晓丹,等. 18650型锂离子电池的循环容量衰减研究[J]. 电源技术, 2012, 36(3): 306-309. LIU Wengang, ZHOU Bo, WANG Xiaodan, et al. Capacity fading of 18650 Li-ion cells with cycling[J]. Chinese Journal of Power Sources, 2012, 36(3): 306-309. [59] LANG M, DARMA M S D, KLEINER K, et al. Post mortem analysis of fatigue mechanisms in LiNi0.8Co0.15Al0.05O2-LiNi0.5Co0.2Mn0.3O2- LiMn2O4/graphite lithium ion batteries[J]. Journal of Power Sources, 2016, 326: 397-409. [60] 李贺, 于申军, 陈志奎,等. 锂离子电池内部短路失效的反应机理研究[J]. 电化学, 2010(2): 185-191. LI He, YU Shenjun, CHEN Zhi-kui, et al. Failure reaction mechanism of internal short-circuit for lithium-ion batteries[J]. Electrochemistry, 2010(2): 185-191. [61] YAYATHI S, WALKER W, DOUGHTY D, et al. Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications[J]. Journal of Power Sources, 2016, 329: 197-206. [62] HE M, CASTEL E, LAUMANN A, et al. In situ gas analysis of Li4Ti5O12 based electrodes at elevated temperatures[J]. Journal of The Electrochemical Society, 2015,162(6): A870-A876. [63] KONG W, LI H, HUANG X, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1): 285-291. [64] ZHANG H L, SUN C H, LI F, et al. New insight into the interaction between propylene carbonate-based electrolytes and graphite anode material for lithium ion batteries[J]. Journal of Physical Chemistry C, 2007, 111(12): 4740-4748. [65] ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery[J]. Journal of Power Sources, 2006, 160 (2): 1349-1354. [66] WALDMANN T, WILKA M, KASPEr M, et al. Temperature dependent ageing mechanisms in lithium-ion batteries e A Post-Mortem study[J]. Journal of Power Sources, 2014, 262: 129-135. [67] ZHANG Lingling, MA Yulin, CHENG Xinqun, et al. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling[J]. Journal of Power Sources, 2016, 329: 255-261. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[6] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[7] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[8] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[9] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[10] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[11] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[12] | Jinhui GAO, Yunzhu CHEN, Yang YANG, Fanhui MENG, Hong XU, Li WANG, Jiang ZHOU, Xiangming HE. Research progress of reference electrode for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 987-994. |
[13] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[14] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
[15] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||