[1] 丁翔, 黄丽华, 纪敏, 等. 氮化碳自组装包裹对SnO2-TiO2复合锂离子电池负极材料电化学性能的影响[J]. 有色金属材料与工程, 2016, 37(2):1-7. DING Xiang, HUANG Lihua, JI Min, et al. Effect of carbon nitride self-assembly wrapping on electrochemical performance of SnO2-TiO2 composite cathode materials for lithium ion batterie[J]. Nonferrous Metal Materials and Engineering, 2016, 37(2):1-7.
[2] 张帅国, 武斌, 王泽宇, 等. 钠离子电池锡基负极材料研究进展[J]. 电源技术, 2018, 42(6):911-914. ZHANG Shuaibing, WU Bin, WANG Zeyu, et al. Research progress of tin-based anode materials for sodium ion batteries[J]. Power Supply Technology, 2018, 42(6):911-914.
[3] CHEN J S, LOU X W. SnO2-based nanomaterials:Synthesis and application in lithium-ion batteries[J]. Small, 2013, 9(11):1877-1893.
[4] DING J, LI Z, WANG H, et al. Sodiation vs. lithiation phase transformations in a high rate-high stability SnO2 in carbon nanocomposite[J]. Journal of Materials Chemistry A, 2015, 3(13):7100-7111.
[5] 刘旭燕, 孙超, 韩艳林, 等. 锂离子电池二氧化锡负极材料研究进展[J]. 上海理工大学学报, 2018, 40(4):342-350. LIU Xuyan, SUN Chao, HAN Yanlin, et al. Research progress of tin dioxide anode materials for lithium ion batteries[J]. Journal of Shanghai University of Technology, 2018, 40(4):342-350.
[6] SU D, WANG C, AHN H, et al. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(30):12543-12550.
[7] QIN B S, ZHANG H, THOMAS D, et al. Ultrafast ionic liquid-assisted microwave synthesis of SnO microflowers and their superior sodiumion storage performance[J]. ACS Applied Materials & Interfaces, 2017, 9(32):26797-26804.
[8] RUAN B, GUO H, LIU Q, et al. 3-D structured SnO2-polypyrrole nanotubes applied in Na-ion batteries[J]. RSC Advances, 2016, 6(105):103124-103131.
[9] YUAN J J, HAO Y C, ZHANG X K, et al. Sandwiched CNT@SnO2@PPy nanocomposites enhancing sodium storage[J]. Colloids and Surfaces A, 2018, 555:795-801.
[10] ZHANG W, CAO P, LI L, et al. Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodiumion batteries[J]. Chemical Engineering Journal, 2018, 348:599-607.
[11] ZHANG S G, YUE L C, WANG M, et al. SnO2 nanoparticles confined by N-doped and CNTs-modified carbon fibers as superior anode material for sodium-ion battery[J]. Solid State Ionics, 2018, 323:105-111.
[12] MAHMUT D, LU Y, GE Y Q, YIlDIZ O, et al. Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as highcapacity sodium-ion battery anode material[J]. ACS Applied Materials & Interfaces, 2015, 7:18387-18396.
[13] ZHU J, DENG D. Uniform distribution of 1-D SnO2 nanorod arrays anchored on 2-D graphene sheets for reversible sodium storage[J].Chemical Engineering Science, 2016, 154:54-60.
[14] WANG J, ZHU G, LIU X, et al. In situ synthesis of tin dioxide submicrorods anchored on nickel foam as an additive-free anode for high performance sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2019, 533:733-741
[15] LI H Z, YANG L Y, LLU J, et al. Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries[J]. Journal of Power Sources, 2016, 324:780-787.
[16] MA D, LI Y, MI H, et al. Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57:8901-8905.
[17] DAN Z, LI X, FAN L Z, et al. Three-dimensional porous grapheneencapsulated CNT@SnO2 composite for high-performance lithium and sodium storage[J]. Electrochimica Acta, 2017, 230:212-221.
[18] PATRA J, RATH P C, YANG C H, et al. Three-dimensional interpenetrating mesoporous carbon confining SnO2 particles for superior sodiation/desodiation properties[J]. Nanoscale, 2017, 9:8674-8683.
[19] ZHAO X, LUO M, ZHAO W, et al. SnO2 nanosheets anchored on a 3D, bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10:38006-38014.
[20] ZHAO X, ZHAO Y D, LIU Z H, et al. Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors[J]. Chemical Engineering Journal, 2018, 354:1164-1173.
[21] CHENN Z, YIN D, ZHANG M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries[J]. Small, 2018, 14(17):doi:10.1002/smll.201703818.
[22] ZHAI P, QIN J, GUO L, et al. Smart hybridization of Sn2Nb2O7/SnO2@3D carbon nanocomposites with enhanced sodium storage performance through self-buffering effects[J]. Journal of Materials Chemistry A, 2017, 5:13052-13061.
[23] VADAHANAMBI S, PARK H. Hollow SnO2@carbon core-shell spheres stabilized on reduced graphene oxide for high-performance sodium-ion batteries[J]. New Journal of Chemistry, 2016, 41(2):442-446.
[24] QIN J, ZHAO N, SHI C, et al. Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5:10946-10956.
[25] HU X, WANNG G, WANG B, et al. Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 355:986-998. |