[1] TWIDELL J, WEIR T. Renewable energy resources[M]. Routledge, 2015.
[2] TRANCIK J E. Renewable energy: Back the renewables boom[J]. Nature, 2014, 507(7492): 300-302.
[3] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[4] YANG Z, ZHANG J, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
[5] PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
[6] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[7] NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264.
[8] TARASCON J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510.
[9] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[10] BALOGUN M S, LUO Y, QIU W, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178.
[11] KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie-International Edition, 2015, 54(11): 3431-3448.
[12] ADELHELM P, HARTMANN P, BENDER C L, et al. From lithium to sodium: Cell chemistry of room temperature sodium–air and sodium-sulfur batteries[J]. Beilstein Journal of Nanotechnology, 2015, 6(1): 1016-1055.
[13] KUBOTA K, KOMABA S. Review-practical issues and future perspective for na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2538-A2550.
[14] KIM S, MA X, ONG S P, et al. A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation[J]. Physical Chemistry Chemical Physics, 2012, 14(44): 15571-15578.
[15] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017,: doi: 10.1039/c1036cs00776g.
[16] HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102.
[17] GUO S, YI J, SUN Y, et al. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries[J]. Energy & Environmental Science, 2016, 9(10): 2978-3006.
[18] DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B & C, 1980, 99(1/4): 81-85.
[19] KIM D, KANG S H, SLATER M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes[J]. Advanced Energy Materials, 2011, 1(3): 333-336.
[20] GUO S, LIU P, YU H, et al. A layered P2-and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2015, 127(20): 5992-5997.
[21] MAAZAZ A, DELMAS C, HAGENMULLER P. A study of the NaxTiO2 system by electrochemical deintercalation[J]. Journal of Inclusion Phenomena, 1983, 1(1): 45-51.
[22] WU D, LI X, XU B, et al. NaTiO2: A layered anode material for sodium-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 195-202.
[23] SHANNON R D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(SEP1): 751-767.
[24] WANG Y, YU X, XU S, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communications, 2013, 4: 2365.
[25] YU H, REN Y, XIAO D, et al. An ultrastable anode for long-life room-temperature sodium-ion batteries[J]. Angewandte Chemie- International Edition, 2014, 53(34): 8963-8969.
[26] GUO S, SUN Y, YI J, et al. Understanding sodium-ion diffusion in layered P2 and P3 oxides via experiments and first-principles calculations: a bridge between crystal structure and electrochemical performance[J]. Npg Asia Materials, 2016, 8: e266.
[27] FIELDEN R, OBROVAC M N. Low voltage sodium intercalation in NaxNix/2Ti1x/2O2 (0.5x1.0)[J]. Journal of the Electrochemical Society, 2014, 161(6): A1158-A1163.
[28] XU S, WANG Y, BEN L, et al. Fe-based tunnel-type Na0.61Mn0.27Fe0.34Ti0.39O2 designed by a new strategy as a cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(22).
[29] YU H, GUO S, ZHU Y, et al. Novel titanium-based O-3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries[J]. Chemical Communications, 2014, 50(4): 457-459.
[30] YOSHIDA H, YABUUCHI N, KUBOTA K, et al. P2-type Na2/3Ni1/3Mn2/3xTixO2 as a new positive electrode for higher energy Na-ion batteries[J]. Chemical Communications, 2014, 50(28): 3677-3680.
[31] WANG Y, XIAO R, HU Y S, et al. P2-Na0.6Cr0.6Ti0.4O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries[J]. Nature Communications, 2015, 6: 6954.
[32] GUO S, YU H, LIU P, et al. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2[J]. Energy & Environmental Science, 2015, 8(4): 1237-1244.
[33] GUO S, LIU P, SUN Y, et al. A high-voltage and ultralong-life sodium full cell for stationary energy storage[J]. Angewandte Chemie-International Edition, 2015, 54(40): 11701-11705.
|