Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 319-330.doi: 10.19799/j.cnki.2095-4239.2020.0045
Previous Articles Next Articles
ZHAN Yuanjie1,2, WU Yida1,2, MA Xiaowei1, LIANG Haicong1, HUANG Xuejie1,2()
Received:
2020-01-19
Revised:
2020-02-03
Online:
2020-03-05
Published:
2020-03-15
Contact:
Xuejie HUANG
E-mail:xjhuang@iphy.ac.an
CLC Number:
ZHAN Yuanjie, WU Yida, MA Xiaowei, LIANG Haicong, HUANG Xuejie. 4.5 V Li-ion battery with a carbonate ester-based electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 319-330.
Table 1
The electrochemical properties of the reported full cells using the high-voltage resistant solvent"
名称 | 电解液 | 电化学性能 [比容量,容量保持率(倍率,循环次数,效率),测试温度] |
---|---|---|
LNMO/graphite[ | 1 mol/L LiPF6-FEC/HF-DEC | 约119 mA·h/g(C/10),约87.0%(C/3,50周,约99.8%),25 ℃ |
LNMO/graphite[ | 1 mol/L LiPF6-FEC/F-EMC/F-EPE | 约125 mA·h/g(C/10),约89.9%(C/3,100周,>99.5%),25 ℃ 约122 mA·h/g(C/10),约66.93%(C/3,100周,>99.5%),55℃ |
LNMO/graphite[31] | 1 mol/L LiPF6-F-AEC/F-EMC/F-EPE+2%TFP-PC-E | 约114 mA·h/g(C/10),约51.66%(C/3,100周,~98.6%),55 ℃ |
LNMO/graphite[ | 1 mol/L LiPF6-FEC/DMC/EMC/HFPM | 1.434 mA·h/g(C/2),82%(C/2,200周,>99.6%),25 ℃ |
LNMO/graphite[ | 1 mol/L LiPF6-FEC/PFE | 约118 mA·h/g(C/10),57.1%(1 C,200周,约99.6%),30 ℃ |
LNMO/MCMB[ | 3 mol/L LiFSI-SL | 约111 mA·h/g(C/2),69%(C/2,1000周,约99.8%),30 ℃ |
LNMO/MCMB[ | 1 mol/L LiPF6-FEC/DMC/EMC/TTE | 120 mA·h/g(1C),93%(1C,35周,/)25 ℃ |
LNMO/MCMB[ | 1 mol/L LiDFOB-SL + 5 wt% TMSP | 110 mA·h/g(C/2),80.5%(C/2,300周,98.3%),25 ℃ 119 mA·h/g(C/2),81.9%(C/2,100周,94.7%),55 ℃ |
LNMO/LTO[ | 0.7 mol/L LiTFSI-Pyr14TFSI | 90 mA·h/g(C/2),47%(C/2,50周,约96%),40 ℃ 105 mA·h/g(C/2),71.8%(C/2,50周,约95%),60 ℃ |
LNMO/LTO[ | 1 mol/L LiPF6-TMS/EMC | 约85 mA·h/g(2C),90.58%(2C,1000周,/)25 ℃ |
LNMO/Mo6S8 [ | 1 mol/L LiBF4-EMIBF4 | 约100 mA·h/g(C/6),约66.7%(C/2,40~80周,/),30 ℃ |
NMC442/graphite[ | 1 mol/L LiPF6-FEC/TFEC+2% PES +0.5% MMDS | 约175 mA·h/g(C/2.4),约56%(C/2.4,800周,约99.6%),40 ℃ |
NMC532/graphite[ | 1 mol/L LiPF6-DFEC/FMES | 约190 mA·h/g(C/10),78.94%(C/3,500周,≥99.9%),25 ℃ |
NMO/graphite(本文) | 1mol/L LiPF6-EC/DMC+1% TMSP+2% LODFB | 116.9 mA·h/g(C/5),88.02%(1C,1000周,约99.93%),25 ℃ 119.7 mA·h/g(C/5),93.88%(1C,300周,约99.80%),55 ℃ |
1 | AMINE K , TUKAMOTO H , YASUDA H , et al . Preparation and electrochemical investigation of LiMn2- x Me x O4 (Me: Ni, Fe, and x= 0.5, 1) cathode materials for secondary lithium batteries[J]. Journal of Power Sources, 1997, 68(2): 604-608. |
2 | ZHONG Q M , BONAKCLARPOUR A , ZHANG M J , et al . Synthesis and electrochemistry of LiNixMn2-xO4 [J]. Journal of the Electrochemical Society, 1997, 144: 205-213. |
3 | 王昊, 贲留斌, 林明翔, 等 锂离子电池高电压正极材料LiNi 0.5 Mn 1.5O4 的研究进展[J]. 储能科学与技术, 2017, 6(5): 841-854. |
WANG H , BEN L L, LIN M X , et al . Research progress on high voltage cathode material LiNi0.5Mn1.5O4 for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 841-854. | |
4 | DUNCAN H , DUGUAY D , ABU-LEBDEH Y , et al . Study of the LiMn1.5Ni0.5O4/electrolyte interface at room temperature and 60 °C[J]. Journal of the Electrochemical Society, 2011, 158(5): 537-545. |
5 | DUNCAN H , ABU-LEBDEH Y , DAVIDSON I J . Study of the cathode-electrolyte interface of LiMn1.5Ni0.5O4 synthesized by a sol-gel method for Li-ion batteries[J]. Journal of the Electrochemical Society, 2010, 157(4): 528-535. |
6 | ARREBOLA J C , CABALLERO A , HERNAN L , et al . Re-examining the effect of ZnO on nanosized 5 V LiNi0.5Mn1.5O4 spinel: An effective procedure for enhancing its rate capability at room and high temperatures[J]. Journal of Power Sources, 2010, 195(13): 4278-4284. |
7 | LUO X J , BEN L L . Effect of MgO and Ta2O5 co-coatings on electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. Journal of Alloys and Compounds, 2019, 810: 151951. |
8 | KIM J H , PIECZONKA N P W , LI Z , et al . Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries[J]. Electrochimica Acta, 2013, 90: 556-562. |
9 | PIECZONKA N P W , LIU Z , LU P , et al . Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(31): 15947-15957. |
10 | ASL N M, KIM J H , PIECZONKA N P W , et al . Multilayer electrolyte cell: A new tool for identifying electrochemical performances of high voltage cathode materials[J]. Electrochemistry Communications, 2013, 32: 1-4. |
11 | TALYOSEF Y , MARKOVSKY B , SALITRA G , et al . The study of LiNi0.5Mn1.5O4 5V cathodes for Li-ion batteries[J]. Journal of Power Sources, 2005, 146(1-2): 664-669. |
12 | AURBACH D , MARKOVSKY B , TALYOSSEF Y , et al . Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells[J]. Journal of Power Sources, 2006, 162(2): 780-789. |
13 | PATOUX S , DANIEL L , BOURBON C , et al . High voltage spinel oxides for Li-ion batteries: From the material research to the application[J]. Journal of Power Sources, 2009, 189(1): 344-352. |
14 | MANTHIRAM A , CHEMELEWSKI K , LEE E S . A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7: 1339-1350. |
15 | XU K , ANGELL C A . Sulfone-based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2002, 149(7): 920-926. |
16 | ABOUIMRANE A , BELHAROUAK I , AMINE K . Sulfone-based electrolytes for high-voltage Li-ion batteries[J]. Electrochemistry Communications, 2009, 11(5): 1073-1076. |
17 | DEMEAUX J , VITO E D , LEMORDANT D , et al . On the limited performances of sulfone electrolytes towards the LiNi0.4Mn1.6O4 spinel[J]. Physical Chemistry Chemical Physics, 2013, 15: 20900-20910. |
18 | XUE L , UENO K , LEE S Y, et al . Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode[J]. Journal of Power Sources, 2014, 262: 123-128. |
19 | ARMAND M , ENDRES F , MACFARLANE D R , et al . Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8: 621-629. |
20 | MARKEVICH E , BARANCHUGOV V , AURBACH D . On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5V Li ion batteries[J]. Electrochemistry Communications, 2006, 8(8): 1331-1334. |
21 | BAE S Y, SHIN W K , KIM D W . Protective organic additives for high voltage LiNi0.5Mn1.5O4 cathode materials[J]. Electrochimica Acta, 2014, 125: 497-502. |
22 | LEWANDOWSKI A , SWIDERSKA-mOCEK A . Lithium-metal potential in Li+ containing ionic liquids[J]. Journal of Applied Electrochemistry, 2010, 40: 515-524. |
23 | ZHANG Z , HU L , WU H , et al . Fluorinated electrolytes for 5V lithium-ion battery[J]. Energy & Environmental Science, 2013, 6: 1806-1810. |
24 | HU L , ZHANG Z , AMINE K . Fluorinated electrolytes for Li-ion battery: An FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple[J]. Electrochemistry Communications, 2013, 35: 76-79. |
25 | ZHU Y R , YI T F . Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode[J]. Ionics, 2016, 22: 1759-1774. |
26 | KIM J H , PIECZONKA N P W , YANG L . Challenges and approaches for high-voltage spinel lithium-ion batteries[J]. ChemPhysChem., 2014, 15: 1940-1954. |
27 | QIAO R M , WANG Y S , OLALDE-VELASCO P , et al . Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading[J]. Journal of Power Sources, 2015, 273: 1120-1126. |
28 | LIN M X , BEN L B, SUN Y , et al . Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials, 2015, 27(1): 292-303. |
29 | WANG H , BEN L B, YU H L , et al . Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures[J]. Journal of Materials Chemistry A, 2017, 5: 822-834. |
30 | HE M , HU L , XUE Z , et al . Fluorinated electrolytes for 5V Li-ion chemistry: Probing voltage stability of electrolytes with electrochemical floating test[J]. Journal of The Electrochemical Society, 2015, 162(9): 1725-1729. |
31 | HU L , XUE Z , AMINE K , et al . Fluorinated electrolytes for 5V Li-ion chemistry: Synthesis and evaluation of an additive for high-voltage LiNi0.5Mn1.5O4/graphite cell[J]. Journal of The Electrochemical Society, 2014, 161(12): 1777-1781. |
32 | XIA L , XIA Y , WANG C , et al . 5 V-class electrolytes based on fluorinated solvents for Li-ion batteries with excellent cyclability[J]. ChemElectroChem, 2015, 2: 1707-1712. |
33 | KIM C K , KIM K , SHIN K , et al . Synergistic effect of partially fluorinated ether and fluoroethylene carbonate for high-voltage lithium-ion batteries with rapid chargeability and dischargeability[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44161-44172. |
34 | ALVARADO J , SCHROEDE M A , ZHANG M , et al . A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries[J]. Materials Today, 2018, 21(4): 341-353. |
35 | XIA L , LEE S, JIANG Y , et al . Physicochemical and electrochemical properties of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether as a co-solvent for high-voltage lithium-Ion electrolytes[J]. ChemElect-roChem, 2019, 6: 3747-3755. |
36 | LU D , XU G , HU Z , et al . Deciphering the interface of a high-voltage (5 V-Class) Li-ion battery containing additive-assisted sulfolane-based electrolyte[J]. Small Methods, 2019, 3(10), 1900546.. |
37 | CAO X , HE X , WANG J , et al . High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes[J]. ACS Applied Materials & Interfaces, 2016, 8(39): 25971-25978. |
38 | XIA J , PETIBON R , XIAO A , et al . The effectiveness of electrolyte additives in fluorinated electrolytes for high voltage Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch Li-ion cells[J]. Journal of Power Sources, 2016, 330: 175-185. |
39 | SU C C , HE M , REDFERN P C , et al . Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries[J]. Energy & Environmental Science, 2017, 10: 900-904. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[4] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[5] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[6] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[7] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[8] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[9] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[10] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[11] | Qingmeng WANG, Zhi LIU, Xiaomin CHENG, Qianju CHENG, Zean LYU. Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy [J]. Energy Storage Science and Technology, 2022, 11(1): 9-18. |
[12] | Enda CI, Hui WANG, Xiaoqing LI, Ying ZHANG, Zhenying ZHANG, Jianqiang LI. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2022, 11(1): 30-37. |
[13] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[14] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[15] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||