Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 1-6.doi: 10.19799/j.cnki.2095-4239.2020.0345
• Contention of Sciences and Technologies of Energy Storage • Previous Articles Next Articles
Li WANG1(), Leqiong XIE1, Guangyu TIAN2, Xiangming HE1,2()
Received:
2020-10-28
Revised:
2020-11-07
Online:
2021-01-05
Published:
2021-01-08
CLC Number:
Li WANG, Leqiong XIE, Guangyu TIAN, Xiangming HE. Safety accidents of Li-ion batteries: Reliability issues or safety issues[J]. Energy Storage Science and Technology, 2021, 10(1): 1-6.
1 | HOU J, LU L, WANG L, et al. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-18868-w. |
2 | FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-70. |
3 | LIU X, REN D, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-64. |
4 | FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
5 | 何向明.《电池安全性专刊》特约主编寄语[J]. 储能科学与技术, 2018, 7 (6): I. |
HE X. "Special Issue of Safety" Introduction of contributing editor[J]. Energy Storage Science and Technology, 2018, 7(6): I. | |
6 | FENG X, HE X, OUYANG M, et al. A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): A3748-A3765. |
7 | REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364: 328-340. |
8 | FENG X N, LU L G, OUYANG M G, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208. |
9 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. |
10 | FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25 A·h LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. |
11 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
12 | 何向明, 冯旭宁, 欧阳明高. 车用锂离子动力电池系统的安全性[J]. 科技导报, 2016, 34 (6): 32-38. |
HE X M, FENG X N, OUYANG M G. On the safety issues of lithium ion battery[J]. Science & Technology Review, 2016, 34(6): 32-38. | |
13 | 赵骁, 方谋, 王要武, 等. 电动车用锂离子蓄电池模块安全性之正负极材料[J]. 新材料产业, 2014 (5): 35-39. |
ZHAO X, FANG M, WANG Y, et al. Anode and cathode materials for the safety of lithium ion battery modules for electric vehicles[J]. Advanced Materials Industry, 2014 (5): 35-39. | |
14 | 方谋, 赵骁, 王要武, 等. 隔膜和电解质对电动车电池模块安全性影响[J]. 新材料产业, 2014, (2): 48-52. |
FANG M, ZHAO X, WANG Y, et al. Influence of separactor and electrolyte on the safety of battery module for electric vehicle[J]. Advanced Materials Industry, 2014, (2): 48-52. | |
15 | 方谋, 赵骁, 李建军, 等. 电动车用锂离子蓄电池模块的安全性问题[J]. 新材料产业, 2014(3): 45-48. |
FANG M, ZHAO X, LI J, et al. Safety of lithium ion battery module for electric vehicle[J]. Advanced Materials Industry, 2014(3): 45-48. | |
16 | 方谋, 赵骁, 陈敬波, 等. 从波音787电池事故分析大型动力电池组的安全性[J]. 储能科学与技术, 2014, 3 (1): 42-46. |
FANG M, ZHAO X, CHEN J, et al. A case study of Japan airlines B-787 battery fire[J]. Energy Storage Science and Technology, 2014, 3(1): 42-46. | |
17 | 方谋, 赵骁, 王要武, 等.电动车用锂离子蓄电池模块安全性之热失控[J]. 新材料产业, 2013(8): 48-51. |
FANG M, ZHAO X, WANG Y, et al. Thermal runaway of safety lithium ion battery modules for electric vehicles[J]. Advanced Materials Industry, 2013(8): 48-51. | |
18 | 方谋, 赵骁, 李建军, 等. 电动车用锂离子蓄电池模块安全性之内短路[J]. 新材料产业, 2013 (10): 26-29. |
FANG M, ZHAO X, LI J, et al. Internal short-circuit safety lithium ion battery modules for electric vehicles[J]. Advanced Materials Industry, 2013, (10): 26-29. | |
19 | XIE X, REN D, WANG L, et al. Investigation on thermal runaway of Li-ion cells based on LiNi1/3Mn1/3Co1/3O2[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(3): doi: 10.1115/1.4048329. |
20 | FENG X N, REN D S, ZHANG S C, et al. Influence of aging paths on the thermal runaway features of lithium-ion batteries in accelerating rate calorimetry tests[J]. International Journal of Electrochemical Science, 2019, 14(1): 44-58. |
21 | FENG X, ZHENG S, REN D, et al. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158: 4684-4692. |
22 | FENG X, ZHENG S, REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
23 | ZHENG S Q, WANG L, FENG X N, et al. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries[J]. Journal of Power Sources, 2018, 378: 527-536. |
24 | REN D, LIU X, FENG X, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. |
25 | FENG X, ZHENG S, HE X, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode[J]. Frontiers in Energy Research, 2018, 6: doi: 10.3389/fenrg.2018.00126. |
26 | 王莉, 冯旭宁, 薛钢, 等. 锂离子电池安全性评估的ARC测试方法和数据分析[J]. 储能科学与技术, 2018, 7(6): 1-9. |
WANG L, FENG X N, XUE G, et al. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1-9. | |
27 | 王浩, 李建军, 王莉, 等. 绝热加速量热仪在锂离子电池安全性研究方面的应用[J]. 新材料产业, 2013(1): 53-58. |
WANG H, LI J J, WANG L, et al. Application of ARC in safety research of lithium ion battery[J]. Advanced Materials Industry, 2013(1): 53-58. | |
28 | 谢潇怡, 王莉, 何向明, 等. 锂离子动力电池安全性问题影响因素[J]. 储能科学与技术, 2017, 6 (1): 43-51. |
XIE X Y, WANG L, HE X M, et al. The safety influencing factors of lithium batteries[J]. Energy Storage Science and Technology, 2017, 6(1): 43-51. | |
29 | 王莉, 李建军, 高剑, 等. 钴酸锂正极锂离子电池的过充电安全性[J]. 电池, 2012, 42 (6): 299-301. |
WANG L, LI J J, GAO J, et al. Overcharge safety of lithium ion battery with LiCoO2 positive[J]. Battery Bimonthly, 2012, 42(6): 299-301. | |
30 | 李建军, 王莉, 高剑, 等. 动力锂离子电池的安全性控制策略及其试验验证[J]. 汽车安全与节能学报, 2012, 3 (2): 151-157. |
LI J J, WANG LI, GAO J, et al. Safety control strategy of large format Li-ion batteries and test verification[J]. Journal of Automotive Safety and Energy, 2012, 3(2): 151-157. | |
31 | 王莉, 孙敏敏, 何向明. 锂离子电池安全性设计浅析[J]. 电池工业, 2017, 21 (2): 36-39. |
WANG L, SUN M M, HE X M. A brief review of the design of safety characteristics of Li-ion batteries[J]. Chinese Battery Industry, 2017, 21(2): 36-39. | |
32 | 王莉, 李建军, 何向明. 尚玉明. 动力电池安全性解决方案[C]//第31届全国化学与物理电源学术年会, 中国: 天津, 2015. |
WANG L, LI J J, HE X M, et al. Safety solution for power battery[C]//Proceedings of the 31th China Industrial Association of Power Sources, Tianjin, China, 2015. | |
33 | 王莉, 李建军, 何向明. In动力锂离子电池安全性热失控控制策略[C]//第16届全国固态离子学学术会议暨下一代能源材料与技术国际研讨会, 中国: 成都, 2012. |
WANG L, LI J J, HE X M. Control strategy of thermorunaway for power lithium ion battery[C]//Proceedings of the 16th National Solid State Ion Academic Conference: International Symposium on Next-Generation Energy Materials and Technologies, Chengdu, China, 2012. | |
34 | 谢乐琼, 何向明. 现有电动汽车用动力电池国家标准解读[J]. 新材料产业, 2018(1): 35-42. |
XIE L Q, HE X M. Interpretation of national standards of power batteries for electric vehicles[J]. Advanced Materials Industry, 2018(1): 35-42. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[3] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[4] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[5] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[6] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[7] | Yuanxia DONG, Hengyun ZHANG, Jiajun ZHU, Xiaobin XU, Shunliang ZHU. Numerical simulation study on thermal runaway propagation mitigation structure of automotive battery module [J]. Energy Storage Science and Technology, 2022, 11(5): 1608-1616. |
[8] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[9] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[10] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[11] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[12] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[13] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[14] | Jun WANG, Zhuangzhuang JIA, Peng QIN, Zheng HUANG, Jingyun WU, Wen QI, Qingsong WANG. Simulation of thermal runaway gas diffusion in LiFePO4 battery module [J]. Energy Storage Science and Technology, 2022, 11(1): 185-192. |
[15] | Zhihui GUO, Xiaodan CUI, Linshuang ZHAO, Jiawei CHEN. Fire and gas explosion hazards of high-nickel lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 193-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||