Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 295-309.doi: 10.19799/j.cnki.2095-4239.2020.0407
Previous Articles Next Articles
Mengyu TIAN(), Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2020-12-11
Revised:
2020-12-20
Online:
2021-01-05
Published:
2021-01-08
Contact:
Xuejie HUANG
E-mail:tianmengyu18@mails.ucas.edu.cn;xjhuang@iphy.ac.cn
CLC Number:
Mengyu TIAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2020 to Nov. 30, 2020)[J]. Energy Storage Science and Technology, 2021, 10(1): 295-309.
1 | LI N, HWANG S, SUN M, et al. Unraveling the voltage decay phenomeon in Li-rich layered oxide cathode of no oxygen activity[J]. Advanced Energy Materials, 2019, 9(47): doi: 10.1002/aenm.201902258. |
2 | QIU Z, ZHANG Y, LIU Z, et al. Stabilizing Ni-rich LiNi0.92Co0.06Al0.02O2 cathodes by boracic polyanion and tungsten cation co-doping for high-energy lithium-ion batteries[J]. Chemelectrochem, 2020, 7(18): 3811-3817. |
3 | YAN W, JIA X, YANG S, et al. Synthesis of single crystal LiNi0.92Co0.06Mn0.01Al0.01O2 cathode materials with superior electrochemical performance for lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abacea. |
4 | KIM U H, PARK G T, SON B K, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge[J]. Nature Energy, 2020, doi: 10.1038/s41560-020-00693-6. |
5 | ZUO C, HU Z, QI R, et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn-Teller distortion[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202000363. |
6 | GAO A, LI X, MENG F, et al. In operando visualization of cation disorder unravels voltage decay in Ni-rich cathodes[J]. Small Methods, 2020, doi: 10.1002/smtd.202000730. |
7 | NING F, LI B, SONG J, et al. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-18423-7. |
8 | CRAFTON M J, YUE Y, HUANG T Y, et al. Anion reactivity in cation -disordered rocksalt cathode materials: The influence of fluorine substitution[J]. Advanced Energy Materials, 2020, 10(35): doi: 10.1002/aenm.202001500. |
9 | OKUNO R, YAMAMOTO M, KATO A, et al. Stable cyclability caused by highly dispersed nanoporous Si composite anodes with sulfide-based solid electrolyte[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc3ff. |
10 | YANG H W, MUNISAMY M, KWON M T, et al. Improved high rate and temperature stability using an anisotropically aligned pillar-type solid electrolyte interphase for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42781-42789. |
11 | FENG C, LI J, CHENG S, et al. An atomistic perspective on lithiation kinetics and morphological evolution in void-involved silicon/carbon nanohybrid[J]. Materials & Design, 2020, 195: doi: 10.1016/j.matdes.2020.109037. |
12 | NAM J, KIM E, RAJEEV K K, et al. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-71625-3. |
13 | WANG Y, SATOH M, ARAO M, et al. High-energy, long-cycle-life secondary battery with electrochemically pre-doped silicon anode[J]. Scientific Reports, 2020, 10(1): doi: 10.1038/s41598-020-59913-4. |
14 | CHUNG E H, KIM J P, KIM H G, et al. The synthesis and electrochemical performance of Si composite with hollow carbon microtubes by the carbonization of milkweed from nature as anode template for lithium ion batteries[J]. Energies, 2020, 13(19): 1-10. |
15 | WANG S, DUAN Q, LEI J, et al. Slime-inspired polyacrylic acid-borax crosslinked binder for high-capacity bulk silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228365. |
16 | ZHANG X, WANG D, QIU X, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-17686-4. |
17 | BUDAK O, SRIMUK P, ASLAN M, et al. Titanium niobium oxide Ti2Nb10O29/carbon hybrid electrodes derived by mechanochemically synthesized carbide for high-performance lithium-ion batteries[J]. ChemSusChem, 2020, doi: 10.1002/cssc.202002229. |
18 | CAMPEON B D L, YOSHIKAWA Y, TERANISHI T, et al. Sophisticated rgo synthesis and pre-lithiation unlocking full-cell lithium-ion battery high-rate performances[J]. Electrochimica Acta, 2020, 363: doi: 10.1016/j.electacta.2020.137257. |
19 | JIN Y, YU H, LIANG X. Simple approach: Heat treatment to improve the electrochemical performance of commonly used anode electrodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41368-41380. |
20 | CHEN L, WENG Y, MENG Y, et al. Integrated structure of tin-based anodes enhancing high power density and long cycle life for lithium ion batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 9337-9347. |
21 | DEES D W, RODRIGUES M T, KALAGA K, et al. Apparent increasing lithium diffusion coefficient with applied current in graphite[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abaf9f. |
22 | LI N, ZHANG K, XIE K, et al. Reduced-graphene-oxide-guided directional growth of planar lithium layers[J]. Advanced Materials, 2020, 32(7): doi: 10.1002/adma.201907079. |
23 | NARITA K, CITRIN M A, YANG H, et al. 3d architected carbon electrodes for energy storage[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202002637. |
24 | LIU G, WENG W, ZHANG Z, et al. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all -solid-state lithium batteries[J]. Nano Letters, 2020, 20(9): 6660-6665. |
25 | JIANG W, YAN L, ZENG X, et al. Adhesive sulfide solid electrolyte interface for lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c17828. |
26 | ZHANG J, LI L, ZHENG C, et al. Silicon-doped argyrodite solid |
electrolyte Li6PS5I with improved ionic conductivity and interfacial | |
compatibility for high-performance all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41538-41545. | |
27 | SIYAL S H, JAVED M S, JATOI A H, et al. In situ curing technology for dual ceramic composed by organic-inorganic functional polymer gel electrolyte for dendritic-free and robust lithium-metal batteries[J]. Advanced Materials Interfaces, 2020, 7(20): doi: 10.1002/admi.202000830. |
28 | ZAGORSKI J, SILVAN B, SAUREL D, et al. Importance of composite electrolyte processing to improve the kinetics and energy density of Li metal solid-state batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 8344-8355. |
29 | STRAUSS F, TEO J H, JANEK J, et al. Investigations into the superionic glass phase of Li4PS4I for improving the stability of high-loading all -solid-state batteries[J]. Inorganic Chemistry Frontiers, 2020, 7(20): 3953-3960. |
30 | WEI T, ZHANG Z H, WANG Z M, et al. Ultrathin solid composite |
electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSi/ | |
succinonitrile for high-performance solid-state lithium metal batteries[J]. ACS Applied Energy Materials, 2020, 3(9): 9428-9435. | |
31 | ZHU G L, ZHAO C Z, YUAN H, et al. Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2020, 31: 267-273. |
32 | SUN J, HE C, YAO X, et al. Hierarchical composite-solid-electrolyte with high electrochemical stability and interfacial regulation for boosting ultra-stable lithium batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202006381. |
33 | KOBI S, AMARDEEP, VYAS A, et al. Al and Mg co-doping towards development of air-stable and Li-ion conducting Li-La-zirconate based solid electrolyte exhibiting low electrode/electrolyte interfacial resistance[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abad66. |
34 | WANG M J, CARMONA E, GUPTA A, et al. Enabling "lithium-free" manufacturing of pure lithium metal solid-state batteries through in situ plating[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19004-4. |
35 | HOU J, LU L, WANG L, et al. Thermal runaway of lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-18868-w. |
36 | AUPPERLE F, ESHETU G G, EBERMAN K W, et al. Realizing a high-performance LiNi0.6Mn0.2Co0.2O2/silicon-graphite full lithium ion battery cellviaa designer electrolyte additive[J]. Journal of Materials Chemistry A, 2020, 8(37): 19573-19587. |
37 | HAN X, SUN J. Improved fast-charging performances of phosphorus electrodes using the intrinsically flame-retardant LiFSi based electrolyte[J]. Journal of Power Sources, 2020, 474: doi: 10.1016/j.jpowsour.2020.228664. |
38 | TU W, WEN Y, YE C, et al. Phase transformation of lithium-rich oxide cathode in full cell and its suppression by solid electrolyte interphase on graphite anode[J]. Energy & Environmental Materials, 2020, 3(1): 19-28. |
39 | WANG Z, JIANG L, LIANG C, et al. Effects of 3-fluoroanisol as an electrolyte additive on enhancing the overcharge endurance and thermal stability of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abb8b2. |
40 | ROBINSON J B, OWEN R E, KOK M D R, et al. Identifying defects in Li-ion cells using ultrasound acoustic measurements[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abb174. |
41 | KREMER L S, DANNER T, HEIN S, et al. Influence of the electrolyte salt concentration on the rate capability of ultra-thick NCM 622 electrodes[J]. Batteries & Supercaps, 2020, 3(11): 1172-1182. |
42 | LIU D, KIM C, PEREA A, et al. High-voltage lithium-ion battery using substituted LiCoPO4: Electrochemical and safety performance of 1.2 A·h pouch cell[J]. Materials, 2020, 13(19): doi: 10.3390/ma.13194450. |
43 | ZHU C, LV W, CHEN J, et al. Butyl acrylate (BA) and ethylene carbonate (EC) electrolyte additives for low-temperature performance of lithium ion batteries[J]. Journal of Power Sources, 2020, 476: doi: 10.1016/j.jpowsour.2020.228697. |
44 | FANG Z, ZHENG Z, CHENG W, et al. Mechanism of stability enhancement for adiponitrile high voltage electrolyte system referring to addition of fluoroethylene carbonate[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.588389. |
45 | KRUEGER B, BALBOA L, DOHMANN J F, et al. Solid electrolyte |
interphase evolution on lithium metal electrodes followed by scanning electrochemical microscopy under realistic battery cycling current | |
densities[J]. Chemelectrochem, 2020, 7(17): 3590-3596. | |
46 | WEI Y, HU F, LI Y, et al. Constructing stable anodic interphase for quasi-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39335-39341. |
47 | JIA H, XU Y, BURTON S D, et al. Enabling ether-based electrolytes for long cycle life of lithium-ion batteries at high charge voltage[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c18177. |
48 | CHEN S, ZHANG J, NIE L, et al. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte[J]. Advanced materials (Deerfield Beach, Fla.), 2020, doi: 10.1002/adma.202002325: e2002325-e2002325. |
49 | YANG Y N, LI Y X, LI Y Q, et al. On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes[J]. Nature Communications, 2020, 11(1): 5519-5519. |
50 | ASHBY D S, CHOI C S, EDWARDS M A, et al. High-performance solid-state lithium-ion battery with mixed 2d and 3d electrodes[J]. ACS Applied Energy Materials, 2020, 3(9): 8402-8409. |
51 | YANG X, HU Y, DUNLAP N, et al. A truxenone-based covalent organic framework as an all-solid-state lithium-ion battery cathode with high capacity[J]. Angewandte Chemie-International Edition, 2020, 59(46): 20385-20389. |
52 | LI Y, CAO D, ARNOLD W, et al. Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries[J]. Energy Storage Materials, 2020, 31: 344-351. |
53 | KIM S, HARADA K, TOYAMA N, et al. Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification[J]. Journal of Energy Chemistry, 2020, 43: 47-51. |
54 | RUAN Y, LU Y, LI Y, et al. A 3d cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202007815. |
55 | HUANG C, LEUNG C L A, LEUNG P, et al. A solid-state battery cathode with a polymer composite electrolyte and low tortuosity microstructure by directional freezing and polymerization[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.202002387. |
56 | LEE J, LEE K, LEE T, et al. In situ deprotection of polymeric binders for solution-processible sulfide-based all-solid-state batteries[J]. Advanced Materials, 2020, 32(37): doi: 10.1002/adma.202001702. |
57 | LIU H, CHEN T, XU Z, et al. High-safety and long-life silicon-based lithium-ion batteries via a multifunctional binder[J]. ACS Applied Materials & Interfaces, 2020, doi: 10.1021/acsami.0c17563. |
58 | SINGH N, HORWATH J P, BONNICK P, et al. Role of lithium iodide addition to lithium thiophosphate: Implications beyond conductivity[J]. Chemistry of Materials, 2020, 32(17): 7150-7158. |
59 | KISU K, KIM S, YOSHIDA R, et al. Microstructural analyses of all-solid-state Li-S batteries using LiBH4-based solid electrolyte for prolonged cycle performance[J]. Journal of Energy Chemistry, 2020, 50: 424-429. |
60 | LIU F, SUN G, WU H B, et al. Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries[J]. Nature |
Communications, 2020, 11(1): doi: 10.1038/s41467-020-19070-8. | |
61 | XIONG Q, HUANG G, ZHANG X B. High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator[J]. Angewandte Chemie-International Edition, 2020, 59(43): 19311-19319. |
62 | KONDORI A, JIANG Z, ESMAEILIRAD M, et al. Kinetically stable oxide overlayers on Mo3P nanoparticles enabling lithium-air batteries with low overpotentials and long cycle life[J]. Advanced Materials, 2020, doi: 10.1002/adma.202004028. |
63 | DEWALD G F, OHNO S, HERING J G, et al. Analysis of charge carrier transport toward optimized cathode composites for all-solid-state Li-S batteries[J]. Batteries & Supercaps, 2020, doi: 10.1002/batt.202000194. |
64 | BAEK M, SHIN H, CHAR K, et al. New high donor electrolyte for lithium-sulfur batteries[J]. Advanced Materials, 2020, doi: 10.1002/adma.202005022. |
65 | SUNG S H, KIM S, PARK J H, et al. Role of PVDF in rheology and microstructure of NCM cathode slurries for lithium-ion battery[J]. Materials, 2020, 13(20): doi: 10.3390/ma13204544. |
66 | ISOZUMI H, HORIBA T, KUBOTA K, et al. Application of modified styrene-butadiene-rubber-based latex binder to high-voltage operating LiCoO2 composite electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228332. |
67 | PALANISAMY M, PAREKH M H, POL V G. In situ replenishment of formation cycle lithium-ion loss for enhancing battery life[J]. Advanced Functional Materials, 2020, 30(46): doi: 10.1002/adfm.202003668. |
68 | BUSCHE M R, WEISS M, LEICHTWEISS T, et al. The formation of the solid/liquid electrolyte interphase (SLEI) on NASICON-type glass ceramics and LIPON[J]. Advanced Materials Interfaces, 2020, 7(19): doi: 10.1002/admi.202000380. |
69 | WALTHER F, RANDAU S, SCHNEIDER Y, et al. Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(14): 6123-6136. |
70 | GUNNARSDOTTIR A B, AMANCHUKWU C V, MENKIN S, et al. Noninvasive in situ nmr study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries[J]. Journal of the American Chemical Society, 2020, doi: 10.1021/jacs.0c10258. |
71 | MORITA K, TSUCHIYA B, YE R, et al. In-situ total Li depth profiling of solid state Li ion batteries under charging and discharging by means of transmission elastic recoil detection analysis with 5 meV He2+ ions[J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2020, 479: 249-253. |
72 | SUZUKI K, OTSUKA Y, TSUJI N, et al. Identifying the degradation mechanism in commercial lithium rechargeable batteries via high-energy X-ray compton scattering imaging[J]. Applied Sciences-Basel, 2020, 10(17): doi: 10.3390/app10175855. |
73 | OKASINSKI J S, SHKROB I A, CHUANG A, et al. In situ X-ray spatial profiling reveals uneven compression of electrode assemblies and steep lateral gradients in lithium-ion coin cells[J]. Physical Chemistry Chemical Physics, 2020, 22(38): 21977-21987. |
74 | DENG J, KUMAR A, SIMUNOVIC S, et al. Mechanical modeling and testing of pouch cells under various loading conditions[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abbce0. |
75 | SHITAW K N, YANG S C, JIANG S K, et al. Decoupling interfacial reactions at anode and cathode by combining online electrochemical mass spectroscopy with anode-free Li-metal battery[J]. Advanced |
Functional Materials, 2020, doi: 10.1002/adfm.202006951. | |
76 | FANG R, GE H, WANG Z, et al. A two-dimensional heterogeneous model of lithium-ion battery and application on designing electrode with non-uniform porosity[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abb83a. |
77 | RINKEL B L D, HALL D S, TEMPRANO I, et al. Electrolyte oxidation pathways in lithium-ion batteries[J]. Journal of the American Chemical Society, 2020, 142(35): 15058-15074. |
78 | HUANG H, WU C, LIU Z, et al. Non-destructive ct method for spatially resolved measurement of elemental content and density of Li-B alloys[J]. Frontiers in Chemistry, 2020, 8: doi: 10.3389/fchem.2020.00781. |
79 | MADSEN K E, BASSETT K L, TA K, et al. Direct observation of interfacial mechanical failure in thiophosphate solid electrolytes with operando X-ray tomography[J]. Advanced Materials Interfaces, 2020, 7(19): doi: 10.1002/admi.202000751. |
80 | MARKER K, XU C, GREY C P. Operando NMR of NMC811/graphite lithium-ion batteries: Structure, dynamics, and lithium metal deposition[J]. Journal of the American Chemical Society, 2020, 142(41): 17447-17456. |
81 | MESSINGER R J, TAN VU H, BOUCHET R, et al. Magic-angle -spinning-induced local ordering in polymer electrolytes and its effects on solid-state diffusion and relaxation nmr measurements[J]. Magnetic Resonance in Chemistry, 2020, 58(11): 1118-1129. |
82 | DE VASCONCELOS L S, XU R, ZHAO K. Quantitative spatiotemporal Li profiling using nanoindentation[J]. Journal of the Mechanics and Physics of Solids, 2020, 144: doi: 10.1016/j.jmps.2020.104102. |
83 | DIAZ-LOPEZ M, CUTTS G L, ALLAN P K, et al. Fast operando X-ray pair distribution function using the DRIX electrochemical cell[J]. Journal of Synchrotron Radiation, 2020, 27: 1190-1199. |
84 | KO D S, PARK J H, YU B Y, et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: A comprehensive structural, chemical, and electrical analysis[J]. Advanced Energy Materials, 2020, 10(36): doi: 10.1002/aenm.202001035. |
85 | LIANG C, ZHANG X, XIA S, et al. Unravelling the room-temperature atomic structure and growth kinetics of lithium metal[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-19206-w. |
86 | HONG C S, HAN S M. Mechanical properties of electrochemically lithiated Sn[J]. Extreme Mechanics Letters, 2020, 40: doi: 10.1016/j.eml.2020.100907. |
87 | MO R, TAN X, LI F, et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities[J]. Nature Communications, 2020, 11(1): doi: 10.1038/s41467-020-14859-z. |
88 | KITTA M, SANO H. Determination of solid electrolyte interphase formation mechanism on negative electrode surface in Li-O2 battery electrolyte by operando electrochemical atomic force microscopy observation[J]. Applied Surface Science, 2020, 528: doi: 10.1016/j.apsusc.2020.146997. |
89 | AIKEN C P, HARLOW J E, TINGLEY R, et al. Accelerated failure in LiNi0.5Mn0.3Co0.2O2/graphite pouch cells due to low LiPF6 concentration and extended time at high voltage[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abbe5b. |
90 | YE L, FITZHUGH W, GIL-GONZALEZ E, et al. Toward higher voltage solid-state batteries by metastability and kinetic stability design[J]. Advanced Energy Materials, 2020, 10(34): doi: 10.1002/aenm.202001569. |
91 | CHOUDHURY R, WANG M, SAKAMOTO J. The effects of electric field distribution on the interface stability in solid electrolytes[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc034. |
92 | PARK J, KIM K T, OH D Y, et al. Digital twin-driven all-solid-state battery: Unraveling the physical and electrochemical behaviors[J]. Advanced Energy Materials, 2020, 10(35): doi: 10.1002/aenm.202001563. |
93 | WU Y J, TANAKA T, KOMORI T, et al. Essential structural and experimental descriptors for bulk and grain boundary conductivities of Li solid electrolytes[J]. Science and Technology of Advanced Materials, 2020, 21(1): 712-725. |
94 | HOSSAIN M J, PAWAR G, LIAW B, et al. Lithium-electrolyte solvation and reaction in the electrolyte of a lithium ion battery: A reaxff reactive force field study[J]. Journal of Chemical Physics, 2020, 152(18): doi: 10.1063/5.0003333. |
95 | KHODR Z, MALLET C, DAIGLE J C, et al. Electrochemical study of functional additives for Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(12): doi: 10.1149/1945-7111/abae92. |
96 | PARK K Y, PARK J W, SEONG W M, et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228369. |
97 | STURM J, FRANK A, RHEINFELD A, et al. Impact of electrode and cell design on fast charging capabilities of cylindrical lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abb40c. |
98 | ARIYOSHI K, SUGAWA J, MASUDA S. Differentiating the rate capabilities of lithium-nickel-manganese oxide LiNi1/2Mn3/2O4 insertion materials and electrodes using diluted electrode methods[J]. Journal of the Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc10a. |
99 | ALI Y, IQBAL N, LEE S. Role of SEI layer growth in fracture probability in lithium-ion battery electrodes[J]. International Journal of Energy Research, 2020, doi: 10.1002/er.6150. |
100 | LEE E, BENEDEK R. Cluster expansion analysis of atomic order in Li-ion battery cathode material LiCoyNi1-yO2[J]. Journal of the Electrochemical Society, 2020, 167(13): doi: 10.1149/1945-7111/abba61. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[4] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[7] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[8] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[9] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[10] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[13] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[14] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[15] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||