Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 321-334.doi: 10.19799/j.cnki.2095-4239.2021.0380
• Energy Storage Patent Analysis • Previous Articles Next Articles
Received:
2021-07-26
Revised:
2021-08-15
Online:
2022-01-05
Published:
2022-01-10
Contact:
Junyan ZHANG
E-mail:zhangziyan@tju.edu.cn;swallowzh@tju.edu.cn
CLC Number:
Ziyan ZHANG, Junyan ZHANG. International competition of key energy storage technologies based on high-quality patents[J]. Energy Storage Science and Technology, 2022, 11(1): 321-334.
Table 1
Patent search formulas for four key energy storage technologies"
技术领域 | 检索式 |
---|---|
物理储能 | TIABC=(kinetic or flywheel* or fly technolog* or pumped hydro storage or compressed air or CAES) AND IPC=(F OR G) AND Ti=(power stor*or energy stor* or energy-storing) NOT PT=(3) NOT IPC=(A OR D OR E) |
电磁场 储能 | TIABC=(superconducting magnetic* or double-layered capacitor* or uper capacitor* or Super capacitor or Ultra capacitor or "HEDM" or high density capacitor*) and IPC=(H) AND Ti=(power stor* or energy stor* or energy-storing) NOT PT=(3) NOT IPC=(A OR D OR E) |
电化学 储能 | TIABC=(electrochemical OR "Lithium-ion" OR Lithium sulphur OR "Li-ion" OR Sodium sulphur OR "NaS" OR "Zebra" OR "Na-NiCl2" OR nickel cadmium OR "Nicd" OR nickel metal hydride OR "Ni-MeH" OR lead acid OR "Pb-acid" OR "Zinc-Air" OR flow OR vanadium redox OR "VRB" OR polysulphide bromide OR "PSB" OR zinc bromide OR "ZnBr" OR cerium zinc OR "CeZn" OR Redox flow OR Secondary OR Rechargeable flow OR metal air OR fuel OR hydrogen OR hydraulic OR graphene) AND (cell* OR batter*) and IPC=(H) AND Ti=(power stor* or energy stor* or energy-storing) NOT PT=(3) NOT IPC=(A OR D OR E) |
相变 储能 | TIABC=(latent thermal OR "LTES" OR electric thermal OR ice thermal OR phase change OR phase trans* OR molten salt) AND IPC=(F OR H) AND IPC-MAIN=(F) AND Ti=(power stor* or energy stor* or energy-storing) NOT PT=(3) NOT IPC=(A OR D OR E) |
Table 4
Distribution of patent types and applicant types for 4 key energy storage technologies"
技术领域 | 国家 | 企业专利 | 高校及科研院所专利 | 企业数 | 高校科研院所数 | 企业梯队指数 |
---|---|---|---|---|---|---|
物理储能 | 美国 | 149 | 10 | 83 | 7 | 0.324 |
中国 | 164 | 244 | 77 | 55 | 0.113 | |
德国 | 79 | 0 | 41 | 0 | 0.16 | |
日本 | 55 | 4 | 18 | 3 | 0.135 | |
英国 | 14 | 0 | 12 | 0 | 1.809 | |
电场储能 | 美国 | 69 | 16 | 48 | 10 | 0.676 |
中国 | 307 | 263 | 152 | 92 | 0.084 | |
德国 | 23 | 1 | 14 | 1 | 0.959 | |
日本 | 30 | 7 | 16 | 5 | 1.033 | |
英国 | 3 | 1 | 3 | 1 | — | |
电化学储能 | 美国 | 456 | 60 | 209 | 38 | 0.188 |
中国 | 658 | 325 | 319 | 109 | 0.08 | |
德国 | 369 | 17 | 79 | 9 | 0.066 | |
日本 | 957 | 14 | 126 | 10 | 0.058 | |
英国 | 20 | 3 | 19 | 2 | 3.182 | |
相变储能 | 美国 | 113 | 16 | 164 | 15 | 0.754 |
中国 | 421 | 286 | 490 | 92 | 0.278 | |
德国 | 61 | 5 | 75 | 4 | 0.36 | |
日本 | 45 | 1 | 23 | 1 | 0.159 | |
英国 | 18 | 3 | 20 | 3 | 1.309 |
Table 5
Characteristics of energy storage technology knowledge network"
技术领域 | 时间区间/年 | 主体数 | 知识流量 | 聚类系数 | 平均路径长度 | 小世界商 | 社区数 |
---|---|---|---|---|---|---|---|
物理储能 | 1965—1981 | 32 | 1211 | 0.476 | 1.6 | 9.674 | 3 |
1982—2003 | 39 | 3374 | 0.44 | 1.824 | 8.777 | 3 | |
2004—2020 | 42 | 9070 | 0.534 | 1.769 | 5.088 | 4 | |
电场储能 | 1980—1994 | 14 | 684 | 0.218 | 1.538 | 1.453 | 1 |
1995—2006 | 18 | 3018 | 0.489 | 1.791 | 2.268 | 4 | |
2007—2020 | 33 | 5431 | 0.507 | 1.714 | 3.992 | 3 | |
电化学储能 | 1964—1982 | 26 | 692 | 0.375 | 1.653 | 4.869 | 2 |
1983—2001 | 36 | 5814 | 0.522 | 1.649 | 7.712 | 3 | |
2002—2020 | 44 | 38665 | 0.619 | 1.793 | 4.05 | 3 | |
相变储能 | 1965—1982 | 32 | 1284 | 0.472 | 1.54 | 8.867 | 2 |
1983—2002 | 31 | 1705 | 0.446 | 2.1 | 6.652 | 4 | |
2003—2020 | 42 | 7445 | 0.543 | 1.876 | 3.749 | 4 |
Table 6
High-quality patent layout of some countries or regions"
专利组织 | 中国 | 美国 | 日本 | 德国 | 韩国 | 法国 | 英国 | 中国台湾 | 其他 |
---|---|---|---|---|---|---|---|---|---|
中国国家知识产权局 | 2571 | 211 | 251 | 121 | 18 | 26 | 14 | 9 | 59 |
美国专利及商标局 | 48 | 1154 | 342 | 171 | 41 | 41 | 31 | 17 | 72 |
日本专利局 | 24 | 169 | 1078 | 65 | 18 | 19 | 14 | 3 | 37 |
世界知识产权组织 | 75 | 338 | 256 | 192 | 20 | 51 | 44 | 0 | 97 |
欧洲专利局 | 30 | 254 | 144 | 150 | 17 | 51 | 30 | 0 | 93 |
德国专利商标局 | 2 | 50 | 56 | 611 | 0 | 4 | 4 | 1 | 9 |
韩国知识产权局 | 15 | 103 | 105 | 50 | 131 | 11 | 11 | 2 | 16 |
加拿大知识产权局 | 5 | 120 | 17 | 17 | 0 | 11 | 5 | 0 | 235 |
印度专利局 | 9 | 62 | 24 | 27 | 3 | 10 | 10 | 0 | 199 |
澳大利亚知识产权局 | 4 | 90 | 12 | 16 | 1 | 6 | 12 | 0 | 185 |
法国专利局 | 0 | 13 | 2 | 9 | 0 | 97 | 3 | 0 | 0 |
台湾知识产权署 | 2 | 26 | 34 | 2 | 1 | 0 | 2 | 33 | 7 |
英国知识产权局 | 3 | 16 | 2 | 8 | 0 | 3 | 71 | 0 | 0 |
欧亚专利组织 | 0 | 7 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
非洲地区工业产权组织 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
非洲知识产权组织 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
其他专利局 | 20 | 243 | 23 | 139 | 4 | 60 | 52 | 0 | 518 |
Table 7
Layout level of overseas and local markets of some countries"
技术领域 | 国家 | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|---|
物理储能 | 中国 | 1.08 | 82 | 0.1414 | 5 | 5 | 0.9659 | 498/580(85.86%) | -11.678 |
美国 | 2.34 | 80 | 0.2381 | 57 | 0 | 0.625 | 256/336(76.19%) | 5.603 | |
日本 | 2.18 | 54 | 0.4463 | 16 | 11 | 0.6567 | 67/121(55.37%) | -1.283 | |
德国 | 1.68 | 26 | 0.1757 | 13 | 12 | 0.8033 | 122/148(82.43%) | 2.674 | |
韩国 | 1 | 26 | 0.7647 | 0 | 0 | 1 | 8/34(23.53%) | -0.553 | |
电场储能 | 中国 | 1.08 | 42 | 0.073 | 3 | 10 | 0.9662 | 533/599(88.98%) | -11.63 |
美国 | 2.77 | 198 | 0.6408 | 31 | 34 | 0.5676 | 111/184(60.33%) | 6.848 | |
日本 | 2 | 39 | 0.5 | 5 | 6 | 0.641 | 39/84(46.43%) | -0.949 | |
德国 | 2.38 | 33 | 0.5789 | 6 | 8 | 0.625 | 24/33(72.73%) | 0.234 | |
韩国 | 1.97 | 29 | 0.4915 | 3 | 4 | 0.6 | 30/63(47.62%) | -0.674 | |
电化学储能 | 中国 | 1.13 | 129 | 0.1154 | 21 | 39 | 0.9505 | 989/1513(65.37%) | -7.039 |
美国 | 2.57 | 1050 | 0.6119 | 157 | 210 | 0.6006 | 666/1254(53.11%) | 7.912 | |
日本 | 2.15 | 1106 | 0.5351 | 115 | 218 | 0.6233 | 961/1191(80.69%) | -10.592 | |
德国 | 2.88 | 759 | 0.6532 | 116 | 156 | 0.4913 | 403/500(80.6%) | 3.027 | |
韩国 | 2.08 | 98 | 0.5185 | 14 | 15 | 0.5934 | 91/343(26.53%) | -0.667 | |
相变储能 | 中国 | 1.05 | 44 | 0.0495 | 2 | 20 | 0.9763 | 845/937(90.18%) | -7.039 |
美国 | 2.01 | 193 | 0.5013 | 30 | 44 | 0.6927 | 192/299(64.21%) | 7.912 | |
日本 | 2.48 | 65 | 0.5963 | 12 | 16 | 0.5455 | 44/95(46.32%) | -10.592 | |
德国 | 2.19 | 107 | 0.5431 | 18 | 21 | 0.6556 | 90/106(84.91%) | 3.027 | |
韩国 | 1.29 | 2 | 0.2222 | 0 | 1 | 0.8571 | 7/30(23.33%) | -0.667 |
1 | MEJIA C, KAJIKAWA Y. Emerging topics in energy storage based on a large-scale analysis of academic articles and patents[J]. Applied Energy, 2020, 263: doi: 10.1016/j.apenergy.2020.114625. |
2 | 陈海生, 吴玉庭. 储能技术发展及路线图[M]. 北京: 化学工业出版社, 2020: 8-10. |
CHEN H S, WU Y T. Development and roadmap of energy storage technology[M]. Beijing: Chemical Industry Press, 2020: 8-10. | |
3 | ZHANG X H, JING K D, BIN X, et al. The standard essential patent ownership in the global energy interconnection collaborative innovation in China[J]. Energy Policy, 2018, 119: 149-153. |
4 | 刘娜, 孙静林, 毛荐其. 储能技术研究景观辨识及演化探析[J]. 科学学与科学技术管理, 2017, 38(4): 137-148. |
LIU N, SUN J L, MAO J Q. Identifying the landscape and its evolution in energy storage research[J]. Science of Science and Management of S & T, 2017, 38(4): 137-148. | |
5 | 王鑫, 靳军宝, 郑玉荣, 等. 基于DII的超级电容器专利技术国际态势分析[J]. 储能科学与技术, 2019, 8(1): 201-208. |
WANG X, JIN J B, ZHENG Y R, et al. Analyses of international patents on DII based supercapacitors[J]. Energy Storage Science and Technology, 2019, 8(1): 201-208. | |
6 | 华亮. 动力电池独角兽的专利之路——浅析宁德时代专利申请与布局[J]. 储能科学与技术, 2019, 8(2): 415-418. |
HUA L. The patent road of power battery unicorn—Analysis of CATL patent application and layout[J]. Energy Storage Science and Technology, 2019, 8(2): 415-418. | |
7 | 周洪, 魏凤, 吴永庆. 基于专利的无机固态锂电池电解质技术发展研究[J]. 储能科学与技术, 2020, 9(3): 1001-1007. |
ZHOU H, WEI F, WU Y Q. Research on the development of inorganic solid-state electrolyte for lithium battery based on patent analysis[J]. Energy Storage Science and Technology, 2020, 9(3): 1001-1007. | |
8 | 陈锦攀, 刘俏, 裘钢. 基于专利视角的电力储能领域发展态势与对策[J]. 储能科学与技术, 2019, 8(3): 613-618. |
CHEN J P, LIU Q, QIU G. Development trend and countermeasure of electric power storage based on patent analysis[J]. Energy Storage Science and Technology, 2019, 8(3): 613-618. | |
9 | LIN J, WU H M, WU H W. Could government lead the way? Evaluation of China's patent subsidy policy on patent quality[J]. China Economic Review, 2021, 69: 101663. |
10 | HIGHAM K W, DE RASSENFOSSE G, JAFFE A B. Patent quality: Towards a systematic framework for analysis and measurement[J]. Research Policy, 2021,50(4): doi: 10.2139/ssm.3697223. |
11 | 宋河发, 穆荣平, 陈芳. 专利质量及其测度方法与测度指标体系研究[J]. 科学学与科学技术管理, 2010, 31(4): 21-27. |
SONG H F, MU R P, CHEN F. Study on the patent quality and it's measurement index system[J]. Science of Science and Management of S & T, 2010, 31(4): 21-27. | |
12 | WU L F, WANG D S, EVANS J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382. |
13 | BAI X M, ZHANG F L, HOU J, et al. Quantifying the impact of scholarly papers based on higher-order weighted citations[J]. PLoS One, 2018,13(3): doi: 10.1371/journal.pone.0193192. |
14 | FRANCESCHET M, COLAVIZZA G. Quantifying the higher-order influence of scientific publications[J]. Scientometrics, 2020,125(2): 951-963. |
15 | CHEN P, XIE H F, MASLOV S, et al. Finding scientific gems with Google's PageRank algorithm[J]. Journal of Informetrics, 2007,1(1): 8-15. |
16 | 陈劲, 胡小君. “中国企业创新能力50强排名”评价概况及结果[J]. 技术经济, 2015, 34(6): 12-17, 42. |
CHEN J, HU X J. Top 50 enterprises with innovation capability in China: Evaluation introduce and result[J]. Technology Economics, 2015, 34(6): 12-17, 42. | |
17 | ABRAMO G, CICERO T, D'ANGELO C A. A sensitivity analysis of research institutions' productivity rankings to the time of citation observation[J]. Journal of Informetrics, 2012, 6(2): 298-306. |
18 | BORNMANN L, TEKLES A. Disruptive papers published in Scientometrics[J]. Scientometrics, 2019, 120(1): 331-336. |
19 | CHEN J Y, SHAO D N, FAN S K. Destabilization and consolidation: conceptualizing, measuring, and validating the dual characteristics of technology[J]. Research Policy, 2021,50(1): doi: 10.2139/ssrn.3682843. |
20 | MUELLER P. Exploring the knowledge filter: How entrepreneurship and university-industry relationships drive economic growth[J]. Research Policy, 2006, 35(10): 1499-1508. |
21 | ZHOU Y, DONG F, LIU Y F, et al. Forecasting emerging technologies using data augmentation and deep learning[J]. Scientometrics, 2020, 123(1): 1-29. |
22 | BARANOWITZ S A, SALTHE S N, MADERSON P F. The use of the Gompertz curve in an analysis of the dynamics of lizard tail regeneration[J]. Journal of Theoretical Biology, 1977, 65(2): 267-279. |
23 | HART D M. Oases in the valley of death[J]. Nature Energy, 2020, 5(10): 737-738. |
24 | DE RASSENFOSSE G, DERNIS H, GUELLEC D, et al. The worldwide count of priority patents: A new indicator of inventive activity[J]. Research Policy, 2013, 42(3): 720-737. |
25 | 邓阿妹, 魏凤, 谷山强, 等. 基于全球专利的中国电网防雷技术竞争力分析[J]. 高压电器, 2019, 55(10): 156-163. |
DENG A M, WEI F, GU S Q, et al. Competitiveness analysis of the lightning protection technologies for power grid in China based on global patents[J]. High Voltage Apparatus, 2019, 55(10): 156-163. | |
26 | HU X J, ROUSSEAU R. A simple approach to describe a company's innovative activities and their technological breadth[J]. Scientometrics, 2015, 102(2): 1401-1411. |
27 | MAZLOUMIAN A, HELBING D, LOZANO S, et al. Global multi-level analysis of the 'scientific food web'[J]. Scientific Reports, 2013, 3: doi: 10.1038/srepo1167. |
28 | 王文婷, 菅利荣, 刘军, 等. 储能产业产学研合作演化研究——基于专利网络的视角[J]. 储能科学与技术, 2021,10(2): 752-765. |
WANG W T, JIAN L R, LIU J, et al. Evolution of the IUR cooperation network of China's energy storage: An analysis of social network based on patent[J]. Energy Storage Science and Technology, 2021,10(2): 752-765. | |
29 | BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): doi: 10.1088/1742-5468. |
30 | 张亚峰, 李成龙, 肖利. 中国与瑞典专利技术合作研究[J]. 科研管理, 2021, 42(5): 133-142. |
ZHANG Y F, LI C L, XIAO L. A research on the patent-based technology collaboration between China and Sweden[J]. Science Research Management, 2021, 42(5): 133-142. | |
31 | ZHOU Y B. Global Energy Interconnection vision and key technologies[J]. Chinese Science Bulletin, 2019, 64(19): 1985-1994. |
32 | FUNK R J, OWEN-SMITH J. A dynamic network measure of technological change[J]. Management Science, 2017, 63(3): 791-817. |
33 | LYU D Q, GONG K L, RUAN X M, et al. Does research collaboration influence the "disruption" of articles? Evidence from neurosciences[J]. Scientometrics, 2021, 126(1): 287-303. |
34 | HAMMARFELT B, RUSHFORTH A D. Indicators as judgment devices: An empirical study of citizen bibliometrics in research evaluation[J]. Research Evaluation, 2017, 26(3): 169-180. |
35 | KLITZING N, HOEKSTRA R, STRIJBOS J. Literature practices: Processes leading up to a citation[J]. Journal of Documentation, 2019, 75(1): 62-77. |
36 | 魏凤, 张红松, 陈代谢, 等. 重视知识产权保护 加快标准化战略布局[J]. 中国科学院院刊, 2021,36(6): 716-723. |
WEI F, ZHANG H S, CHEN D X, et al. Attach importance to protection of intellectual property rights and speed up strategic blueprint of standardization[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(6): 716-723. | |
37 | 陈启梅, 郑春晓, 李海英. 基于文献计量的储能技术国际发展态势分析[J]. 储能科学与技术, 2020, 9(1): 296-305. |
CHEN Q M, ZHENG C X, LI H Y. Analysis on international development trend of energy storage technology based on bibliometrics[J]. Energy Storage Science and Technology, 2020, 9(1): 296-305. | |
38 | 张俊艳, 赵薇, 雷玲. 合作创新能否提升专利质量?——基于PSM与回归分析的实证研究[J]. 天津大学学报(社会科学版), 2020, 22(3): 246-253. |
ZHANG J Y, ZHAO W, LEI L. Can cooperative innovation improve patent quality?—Empirical study based on PSM and regression methods[J]. Journal of Tianjin University (Social Sciences), 2020, 22(3): 246-253. |
[1] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[2] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[3] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[4] | Zhonghao RAO, Chenzhen LIU, Yutao HUO, Jiateng ZHAO, Changhui LIU. Practice and exploration of teaching for interdisciplinary outstanding and innovative talents training oriented to energy storage technology [J]. Energy Storage Science and Technology, 2021, 10(3): 1206-1212. |
[5] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[6] | LIU Qinghua, ZHANG Sai, JIANG Mingzhe, WANG Qiushi, XING Xueqi, YANG Hong, HUANG Feng, LEMMON P John, MIAO Ping. Study on the low-cost flow battery technologies for energy storage [J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. |
[7] | XIA Xinmao, GUAN Honghao, DING Pengfei, MENG Gaojun. Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm [J]. Energy Storage Science and Technology, 2019, 8(3): 551-558. |
[8] | WANG Jianglin, XU Xueliang, DING Qingqing, ZHU Junping, MA Yongquan, ZHAO Lei, LIU Xiaowei. Application and prospect of zinc nickel battery in energy storage technology [J]. Energy Storage Science and Technology, 2019, 8(3): 506-511. |
[9] | CHEN Rubo. Some thoughts on energy storage system and sponge city [J]. Energy Storage Science and Technology, 2017, 6(S1): 52-. |
[10] | REN Yang1, XIE Yingying1,2, CHEN Zonghai1, MA Zifeng2. Applications of synchrotron X-rays and neutrons diffraction in energy storage materials research [J]. Energy Storage Science and Technology, 2017, 6(5): 855-863. |
[11] | ZHANG Tao1,2, GU Jie1,2, ZHANG Yu3, FANG Chen3. A method of quantifying coupling degree of energy storage technology and standard#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 280-286. |
[12] | XU Shouping, HOU Chaoyong, YANG Shuili. A Li-ion battery management system for large-capacity energy storage [J]. Energy Storage Science and Technology, 2016, 5(1): 69-77. |
[13] | WANG Shuping, XU Tao, GAO Xuenong, FANG Xiaoming, WANG Shuangfeng, ZHANG Zhengguo. Recent progress about expanded graphite matrix composite phase change material for energy storage [J]. Energy Storage Science and Technology, 2014, 3(3): 210-215. |
[14] | LIU Zonghao, ZHANG Huamin, GAO Sujun, MA Xiangkun, LIU Yufeng. The world's largest all-vanadium redox flow battery energy storage system for a wind farm [J]. Energy Storage Science and Technology, 2014, 3(1): 71-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||