Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3631-3640.doi: 10.19799/j.cnki.2095-4239.2022.0234
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Li WEI(), Xuelin HUANG, Wanting ZHANG, Xintong BAI()
Received:
2022-05-05
Revised:
2022-06-08
Online:
2022-11-05
Published:
2022-11-09
Contact:
Xintong BAI
E-mail:weili@tongji.edu.cn;2110249@tongji.edu.cn
CLC Number:
Li WEI, Xuelin HUANG, Wanting ZHANG, Xintong BAI. A temperature monitoring method of supercapacitor module based on a small number of temperature sensors[J]. Energy Storage Science and Technology, 2022, 11(11): 3631-3640.
1 | 曹广华, 高佶, 高洁, 等. 超级电容的原理及应用[J]. 自动化技术与应用, 2016, 35(5): 131-135. |
CAO G H, GAO J, GAO J, et al. Principle and application of super capacitor[J]. Techniques of Automation and Applications, 2016, 35(5): 131-135. | |
2 | 韩冬林, 徐琤颖, 陈愚. 基于超级电容的后备式UPS系统设计[J]. 电源技术, 2016, 40(10): 2036-2039. |
HAN D L, XU Z Y, CHEN Y. Design of backup UPS system based on super capacitors[J]. Chinese Journal of Power Sources, 2016, 40(10): 2036-2039. | |
3 | 王民华, 李凤霞. 混合储能平抑微电网功率波动控制策略研究[J]. 电力电容器与无功补偿, 2020, 41(4): 215-220. |
WANG M H, LI F X. Study on control strategy of hybrid energy storage used in stabilization power fluctuation of microgrid[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(4): 215-220. | |
4 | 华黎, 杨恩东, 梁全顺, 等. 车用超级电容器动力系统在世博公交的应用及推广[C]. 中国智能交通协会, 2011: 9. |
HUA L, YANG E D, LIANG Q S, et al. Application and promotion of automotive supercapacitor power system in expo bus[C]. China Intelligent Transportation Association, 2011: 9. | |
5 | 芮学宝, 朱刚阳. 电容储能型再生电能吸收装置在地铁系统中的应用[J]. 电气化铁道, 2020, 31(S1): 195-198. |
RUI X B, ZHU G Y. Application of capacitive energy storage regenerative energy absorption device in subway system[J]. Electric Railway, 2020, 31(S1): 195-198. | |
6 | 陈朝晖, 张伟先, 黄钰强. 48V超级电容模组的研究[J]. 技术与市场, 2015, 22(5): 68-69. |
CHEN C H, ZHANG W X, HUANG Y Q. Research on 48V supercapacitor module[J]. Technology and Market, 2015, 22(5): 68-69. | |
7 | 陈书礼, 韩金磊, 荣常如, 等. 温度和电压对超级电容器单体内阻影响的研究[J]. 汽车技术, 2016(3): 40-44. |
CHEN S L, HAN J L, RONG C R, et al. Influence of temperature and voltage on internal resistance of supercapacitor[J]. Automobile Technology, 2016(3): 40-44. | |
8 | KÖTZ R, HAHN M, GALLAY R. Temperature behavior and impedance fundamentals of supercapacitors[J]. Journal of Power Sources, 2006, 154(2): 550-555. |
9 | ZHOU Y T, WANG Y N, WANG K, et al. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors[J]. Applied Energy, 2020, 260: doi: 10.1016/j.apenergy.2019.114169. |
10 | FLETCHER S I, SILLARS F B, CARTER R C, et al. The effects of temperature on the performance of electrochemical double layer capacitors[J]. Journal of Power Sources, 2010, 195(21): 7484-7488. |
11 | 顾帅, 韦莉, 张逸成, 等. 超级电容器不一致性研究现状及展望[J]. 中国电机工程学报, 2015, 35(11): 2862-2869. |
GU S, WEI L, ZHANG Y C, et al. Review of nonuniformity research and analysis on supercapacitor[J]. Proceedings of the CSEE, 2015, 35(11): 2862-2869. | |
12 | Q31/0115000918C005—2018, 船用超级电容器系统[S]. 上海: 上海奥威科技开发有限公司, 2018. |
Q31/0115000918C005—2018, Marine supercapacitor system[S]. Shanghai: Shanghai Aowei Technology Development Co., LTD, 2018. | |
13 | VOICU I, LOUAHLIA H, GUALOUS H, et al. Thermal management and forced air-cooling of supercapacitors stack[J]. Applied Thermal Engineering, 2015, 85: 89-99. |
14 | FRIVALDSKY M, CUNTALA J, SPANIK P. Simple and accurate thermal simulation model of supercapacitor suitable for development of module solutions[J]. International Journal of Thermal Sciences, 2014, 84: 34-47. |
15 | 戴朝华, 傅雪婷, 杜云, 等. 不同空间结构的有轨电车超级电容热行为[J]. 西南交通大学学报, 2020, 55(5): 920-927, 900. |
DAI C H, FU X T, DU Y, et al. Supercapacitor thermal behavior of trams with different spatial structures[J]. Journal of Southwest Jiaotong University, 2020, 55(5): 920-927, 900. | |
16 | 郭文强, 董瑶, 李清华, 等. PSO-BP神经网络在开关柜设备温度预测中的应用[J]. 陕西科技大学学报, 2020, 38(1): 149-153. |
GUO W Q, DONG Y, LI Q H, et al. Application of PSO-BP neural network in temperature prediction for switchgear equipment[J]. Journal of Shaanxi University of Science & Technology, 2020, 38(1): 149-153. | |
17 | 赵明珠, 王丹, 方杰, 等. 基于LSTM神经网络的地铁车站温度预测[J]. 北京交通大学学报, 2020, 44(4): 94-101. |
ZHAO M Z, WANG D, FANG J, et al. Prediction of subway station temperature based on LSTM neural network[J]. Journal of Beijing Jiaotong University, 2020, 44(4): 94-101. | |
18 | 贾永会, 杜建桥, 汪潮洋, 等. 基于BP神经网络的燃煤锅炉温度分布预测[J]. 热能动力工程, 2020, 35(7): 130-138. |
JIA Y H, DU J Q, WANG C Y, et al. Prediction model of temperature distribution in combustion zone of coal-fired boiler based on BP neural network[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(7): 130-138. | |
19 | FANG K Z, MU D B, CHEN S, et al. A prediction model based on artificial neural network for surface temperature simulation of nickel-metal hydride battery during charging[J]. Journal of Power Sources, 2012, 208: 378-382. |
20 | LIU K L, LI K, DENG J. A novel hybrid data-driven method for li-ion battery internal temperature estimation[C]//2016 UKACC 11th International Conference on Control (CONTROL). Belfast, UK. IEEE : 1-6. |
21 | HASAN M M, POURMOUSAVI S A, JAHANBANI ARDAKANI A, et al. A data-driven approach to estimate battery cell temperature using a nonlinear autoregressive exogenous neural network model[J]. Journal of Energy Storage, 2020, 32: doi:10.1016/j.est.2020.101879. |
22 | KIM T J, YOUN B D, KIM H J. Online-applicable temperature prediction model for EV battery pack thermal management[C]. ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2013. |
23 | BO Z, LI H W, YANG H C, et al. Combinatorial atomistic-to-AI prediction and experimental validation of heating effects in 350 F supercapacitor modules[J]. International Journal of Heat and Mass Transfer, 2021, 171: doi:10.1016/j.ijheatmasstransfer.2021.121075. |
24 | 赵崇文. 人工神经网络综述[J]. 山西电子技术, 2020(3): 94-96. |
ZHAO C W. A survey on artificial neural networks[J]. Shanxi Electronic Technology, 2020(3): 94-96. | |
25 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. |
26 | HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. |
27 | SUTSKEVER I, MARTENS J, DAHL G, HINTON G. On the importance of initialization and momentum in deep learning[C]. 30th International Conference on Machine Learning, ICML 2013, 1139-1147. |
28 | YADAV S, SHUKLA S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification[C]//2016 IEEE 6th International Conference on Advanced Computing. Bhimavaram, India. IEEE : 78-83. |
[1] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[2] | Mengmeng GENG, Maosong FAN, Kai YANG, Guangjin ZHAO, Zhen TAN, Fei GAO, Mingjie ZHANG. Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network [J]. Energy Storage Science and Technology, 2022, 11(2): 673-678. |
[3] | Shaofeng ZHANG, Qingyong ZHANG, Yesen YANG, Yixin SU, Binyu XIONG. Lithium-ion battery model based on sliding window and long short term memory neural network [J]. Energy Storage Science and Technology, 2022, 11(1): 228-239. |
[4] | Shuai WANG, Hongyan MA, Jiaming DOU, Yingda ZHANG, Shengyan LI, Lujin HU. Estimation of lithium-ion battery state of charge based on UGOA-BP [J]. Energy Storage Science and Technology, 2022, 11(1): 258-264. |
[5] | Zhihao LI, Hao PENG, Yaqin CHEN. Neural network prediction model for temperature distribution of proton exchange membrane fuel cell membrane electrode assembly [J]. Energy Storage Science and Technology, 2021, 10(6): 2053-2059. |
[6] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[7] | Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model [J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351. |
[8] | Yuanjin ZHANG, Huawei WU, Congjin YE. Estimation of the SOC of a battery based on the AUKF-BP algorithm [J]. Energy Storage Science and Technology, 2021, 10(1): 237-241. |
[9] | Zheng CHEN, Leilei LI, Xing SHU, Shiquan SHEN, Yonggang LIU, Jiangwei SHEN. Efficient remaining capacity estimation method for LIB based on feature processing and the RBF neural network [J]. Energy Storage Science and Technology, 2021, 10(1): 261-270. |
[10] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[11] | Yiquan WANG, Bixiong HUANG, Xiao YAN, Xintian LIU, Ying WANG, Shuangyu LIU, Huayuan XU. SOC estimation method of power battery based on LSTM-DaNN [J]. Energy Storage Science and Technology, 2020, 9(6): 1969-1975. |
[12] | ZHANG Xinfeng, YAO Mengmeng, WANG Zhongyi, RAO Yongxiang. Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm [J]. Energy Storage Science and Technology, 2020, 9(1): 138-144. |
[13] | CHEN Dehai, MA Yuan, PAN Weichi. Improved state-of-the-art look-up table method for charge state estimation of PSO-RBF model [J]. Energy Storage Science and Technology, 2019, 8(6): 1190-1196. |
[14] | SU Zhenhao, LI Xiaojie, QIN Jin, DU Wenjie, HAN Ning. SOC estimation method of power battery based on BP artificial neural network [J]. Energy Storage Science and Technology, 2019, 8(5): 868-873. |
[15] | WU Huawei, ZHANG Yuanjin, YE Congjin. Estimation of power battery SOC based on firefly BP neural network [J]. Energy Storage Science and Technology, 2019, 8(3): 575-579. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||