Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 261-270.doi: 10.19799/j.cnki.2095-4239.2020.0314
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Zheng CHEN1(), Leilei LI1, Xing SHU1, Shiquan SHEN1, Yonggang LIU2, Jiangwei SHEN1()
Received:
2020-09-10
Revised:
2020-10-08
Online:
2021-01-05
Published:
2021-01-08
CLC Number:
Zheng CHEN, Leilei LI, Xing SHU, Shiquan SHEN, Yonggang LIU, Jiangwei SHEN. Efficient remaining capacity estimation method for LIB based on feature processing and the RBF neural network[J]. Energy Storage Science and Technology, 2021, 10(1): 261-270.
Table 2
Spearman correlation coefficient of features and available capacity"
电池编号 | 特征量 | ||||||
---|---|---|---|---|---|---|---|
CC-T | CV-T | CC-C | CV-C | CC-T/CV-T | CC-C/CV-C | max-IC | |
电池A-1 | 0.991/0.997 | -0.985/-0.992 | 0.992/0.992 | -0.955/-0.962 | 0.987/0.995 | 0.972/0.974 | 0.996/0.997 |
电池B-2 | 0.975/0.998 | -0.967/-0.976 | 0.996/0.996 | 0.971/0.998 | 0.962/0.993 | 0.983/0.991 | 0.991/0.993 |
电池B-3 | 0.980/0.999 | -0.954/-0.988 | 0.980/0.999 | 0.937/0.999 | 0.956/0.997 | 0.955/0.973 | 0.989/0.994 |
电池B-4 | 0.986/0.998 | -0.936/-0.985 | 0.985/0.988 | 0.951/0.996 | 0.945/0.994 | 0.819/0.832 | 0.998/0.999 |
Table 3
Different battery estimation error"
电池标号及训练量 | 电池A-1 | 电池B-2 | 电池B-3 | 电池B-4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
50% | 60% | 70% | 50% | 60% | 70% | 50% | 60% | 70% | 50% | 60% | 70% | |
MAE | 0.0475 | 0.0370 | 0.0327 | 0.1067 | 0.0460 | 0.0299 | 0.0292 | 0.0258 | 0.0239 | 0.0646 | 0.0494 | 0.0381 0.0022 |
MSE | 0.0026 | 0.0018 | 0.0014 | 0.0137 | 0.0031 | 0.0011 | 0.0018 | 0.0012 | 0.0008 | 0.0056 | 0.0034 | |
RMSE | 0.0506 | 0.0428 | 0.0376 | 0.1171 | 0.0557 | 0.0330 | 0.0429 | 0.0343 | 0.0290 | 0.0748 | 0.0581 | 0.0472 |
1 | TAGADE P, HARIHARAN K S, RAMACHANDRAN S, et al. Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis[J]. Journal of Power Sources, 2020, 445: doi: 10.1016/j.jpowsour.2019.227281. |
2 | WANG X, WEI X, DAI H. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge[J]. Journal of Energy Storage, 2019, 21: 618-631. |
3 | WASSILIADIS N, ADERMANN J, FRERICKS A, et al. Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: A use-case life cycle analysis[J]. Journal of Energy Storage, 2018: 73-87. |
4 | XUE Z, ZHANG Y, CHENG C, et al. Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression[J]. Neurocomputing, 2019: 95-102. |
5 | 韦海燕, 安晶晶, 陈静, 等. 基于改进粒子滤波算法实现锂离子电池RUL预测[J]. 汽车工程, 2019, 41(12): 1377-1383. |
WEI Haiyan, AN Jingjing, CHEN Jing, et al. Prediction of lithium-ion battery based on improved particle filtering algorithm[J]. Automotive Engineering, 2019, 41(12): 1377-1383. | |
6 | 郑涛, 张里, 侯杨成, 等. 基于自适应CKF的老化锂电池SOC估计[J]. 储能科学与技术, 2020, 9(4): 1193-1199. |
ZHENG Tao, ZHANG Li, HOU Yangcheng, et al. SOC estimation of aging lithium battery based on adaptive CKF[J]. Energy Storage Science and Technology, 2020, 9(4): 1193-1199. | |
7 | GUO P, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450. |
8 | WANG J S, LIU P, HICKSGARNER J, et al. Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011, 196(8): 3942-3949. |
9 | ZHANG Y, XIONG R, HE H, et al. State of charge-dependent aging mechanisms in graphite/Li(NiCoAl)O2 cells: Capacity loss modeling and remaining useful life prediction[J]. Appl Energy, 2019, 255(1): doi: 10.1016/j.apenergy.2019.113818. |
10 | TANG X, LIU K, WANG X, et al. Model migration neural network for predicting battery aging trajectories[J]. IEEE Trans Transport Electrification, 2020: 363-374. |
11 | DAI H, ZHAO G, LIN M, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Trans Ind Electron, 2019, 66(10): 7706-7716. |
12 | LIU K, LI Y, HU X, et al. Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries[J]. IEEE Trans Industrial Inf, 2020, 16(6): 3767-3777. |
13 | LIU K, SHANG Y, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Trans Ind Electron, 2020, doi: 10.1109/TIE.2020.2973876. |
14 | 起文斌, 张华, 金周, 等. 锂电池百篇论文点评(2020.04.01—2020.05.31)[J]. 储能科学与技术, 2020, 9(4): 1015-1029. |
QI Wenbin, ZHANG Hua, JIN Zhou, et al. Reviews of selected 100 recent papers for lithium batteries(Apr. 01, 2020 to May 31, 2020)[J]. Energy Storage Science and Technology, 2020, 9(4): 1015-1029. | |
15 | LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373: 40-53. |
16 | WANG D, KONG J Z, ZHAO Y, et al. Piecewise model based intelligent prognostics for state of health prediction of rechargeable batteries with capacity regeneration phenomena[J]. Measurement, 2019, doi: 10.1016/j.measurement.2019.07.064. |
17 | BREUNIG M M, KRIEGEL H P, NG R, et al. LOF: Identifying density-based local outliers[J]. ACM Sigmod Record, 2000, 29(2): 93-104. |
18 | RICHARDSON R R, OSBORNE M A, HOWEY D A. Battery health prediction under generalized conditions using a Gaussian process transition model[J]. Journal of Energy Storage, 2019, 23: 320-328. |
19 | ZHOU Y, HUANG M, CHEN Y, et al. A novel health indicator for on-line lithiumion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321: doi: 10.1016/j.jpowsour.2016.04.119. |
20 | ROWEIS, SAM T, SAU L, et al. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000: 232-2326. |
21 | LU C, TAO L, FAN H. Li-ion battery capacity estimation: A geometrical approach[J]. Journal of Power Sources, 2014, 261(9): 141-147. |
22 | OLGA K, OLEG O, MATTI P. Selection of the optimal parameter value for the locally linear embedding algorithm[C]//Scandinavian Conference on Image Analysis, 2002. |
23 | ER M J, WU S, LU J, et al. Face recognition with radial basis function (RBF) neural networks[J]. IEEE Transactions on Neural Networks, 2002, 13(3): 697-710. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[7] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[8] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[9] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[10] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[11] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[12] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[13] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[14] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[15] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||