1 |
王俊, 曹建军, 张利勇, 等. 基于分布式能源系统的蓄冷蓄热技术应用现状[J]. 储能科学与技术, 2020, 9(6): 1847-1857.
|
|
WANG J, CAO J J, ZHANG L Y, et al. Review on application of cold storage and heat storage technology based on distributed energy system[J]. Energy Storage Science and Technology, 2020, 9(6): 1847-1857.
|
2 |
金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115.
|
|
JIN G, XIAO A R, LIU M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115.
|
3 |
李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562.
|
|
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562.
|
4 |
邹勇, 仇汝冬, 王霞. 石蜡相变材料蓄热过程的模拟研究[J]. 储能科学与技术, 2020, 9(1): 101-108.
|
|
ZOU Y, QIU R D, WANG X. Simulation study on thermal storage process of paraffin phase change materials[J]. Energy Storage Science and Technology, 2020, 9(1): 101-108.
|
5 |
ZHANG T Y, YU M F, LI J, et al. Effect of porosity gradient on mass transfer and discharge of hybrid electrolyte lithium-air batteries[J]. Journal of Energy Storage, 2022, 46: doi: 10.1016/j.est.2021.103808.
|
6 |
洪杰, 孙明生, 罗显峰, 等. 水平及竖直放置套管式相变蓄热单元传热特性的数值模拟[J]. 热能动力工程, 2020, 35(11): 74-80.
|
|
HONG J, SUN M S, LUO X F, et al. Numerical simulation on heat transfer characteristics of double pipe latent heat storage unit placed horizontally and vertically[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(11): 74-80.
|
7 |
杜昭, 阳康, 舒高, 等. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022(2): 531-537.
|
|
DU Z, YANG K, SHU G, et al. Experimental study on the heat storage and release of the solid-liquid phase change in metal-foam-filled tube[J]. Energy Storage Science and Technology, 2022(2): 531-537.
|
8 |
HUANG Y P, CAO D C, SUN D K, et al. Experimental and numerical studies on the heat transfer improvement of a latent heat storage unit using gradient tree-shaped fins[J]. International Journal of Heat and Mass Transfer, 2022, 182: doi: 10.1016/j.ijheatmasstransfer.2021.121920.
|
9 |
CHEN K, MOHAMMED H I, MAHDI J M, et al. Effects of non-uniform fin arrangement and size on the thermal response of a vertical latent heat triple-tube heat exchanger[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103723.
|
10 |
SODHI G S, MUTHUKUMAR P. Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution[J]. Renewable Energy, 2021, 171: 299-314.
|
11 |
YANG X H, GUO J F, YANG B, et al. Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit[J]. Applied Energy, 2020, 279: doi: 10.1016/j.apenergy. 2020.115772.
|
12 |
TIARI S, HOCKINS A, MAHDAVI M. Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations[J]. Case Studies in Thermal Engineering, 2021, 25: doi: 10.1016/j.csite.2021.100999.
|
13 |
LIU G, XIAO T, GUO J F, et al. Melting and solidification of phase change materials in metal foam filled thermal energy storage tank: Evaluation on gradient in pore structure[J]. Applied Thermal Engineering, 2022, 212: doi: 10.1016/j.applthermaleng.2022.118564.
|
14 |
ZHENG Z J, YANG C, XU Y, et al. Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity[J]. Renewable Energy, 2021, 172: 802-815.
|
15 |
WANG Z F, WU J N, LEI D Q, et al. Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application[J]. Applied Energy, 2020, 261: doi: 10.1016/j.apenergy.2019.114472.
|
16 |
贾兴龙, 陈宝明, 张艳勇, 等. 梯度骨架对固液相变蓄热特性影响研究[J]. 山东建筑大学学报, 2020, 35(5): 56-63.
|
|
JIA X L, CHEN B M, ZHANG Y Y, et al. Study on the effect of gradient skeleton on the heat storage characteristics of solid-liquid phase change[J]. Journal of Shandong Jianzhu University, 2020, 35(5): 56-63.
|
17 |
何贤德. 梯度孔隙率泡沫金属复合相变材料蓄热过程研究[D]. 北京: 北京交通大学, 2017.
|
|
HE X D. Investigation on the process of thermal heat storage of metal foam composite phase change material with porosity gradient[D]. Beijing: Beijing Jiaotong University, 2017.
|
18 |
MARRI G K, BALAJI C. Experimental and numerical investigations on the effect of porosity and PPI gradients of metal foams on the thermal performance of a composite phase change material heat sink[J]. International Journal of Heat and Mass Transfer, 2021, 164: doi: 10.1016/j.ijheatmasstransfer.2020.120454.
|
19 |
LONGEON M, SOUPART A, FOURMIGUÉ J F, et al. Experimental and numerical study of annular PCM storage in the presence of natural convection[J]. Applied Energy, 2013, 112: 175-184.
|