Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3688-3698.doi: 10.19799/j.cnki.2095-4239.2022.0344
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Sifei ZHOU(), Jun LI(), Xiaofei WANG, Daoming ZHANG, Haoliang XUE
Received:
2022-06-21
Revised:
2022-07-06
Online:
2022-11-05
Published:
2022-11-09
Contact:
Jun LI
E-mail:sz14f2601@163.com;lijun.sshy@sinopec.com
CLC Number:
Sifei ZHOU, Jun LI, Xiaofei WANG, Daoming ZHANG, Haoliang XUE. Research progress in the conductivity model of lithium battery electrolytes[J]. Energy Storage Science and Technology, 2022, 11(11): 3688-3698.
Table 1
Classical solution model of electrolyte conductivity"
方法 | 溶质 | 溶剂 | 温度/℃ | 盐浓度/(mol/kg) | 平均相对误差/% | 引用文献 |
---|---|---|---|---|---|---|
阿仑尼乌斯方程 | LiClO4 | EC+EMC | -20~60 | 1 | — | [ |
LiPF6 | ||||||
LiBF4 | ||||||
LiTFSI | ||||||
LiFSI | ||||||
VTF方程 | LiPF6 | EC+MOEMC,MOEMC | -60~70 | 0.5~1.25 | — | [ |
LiAsF6 | EC+MOEMC | 1 | ||||
LiPF6 | PC+EC,EC+DMC | -80~10 | 1 | — | [ | |
LiPF6 | PC+EC,PC | 0~25 | 1 | 5.1 | [ | |
平均球近似理论 | LiPF6 | PC,2DG+PC,PMDETA+PC | 25 | 0~1.1 | 4.8 | [ |
LiClO4 | DME,DMC | 25 | 0~1(mol/L) | — | [ | |
LiClO4 | PC+DEC,PC | 25 | 0~2 | — | [ | |
LiPF6 | PC+DEC,PC | 25 | 0~2.5 | |||
有序晶格模型 | LiClO4 | γBL | 25 | 0.2~2 | — | [ |
Table 2
Statistical thermodynamic model of electrolyte conductivity"
方法 | 溶质 | 溶剂 | 温度/℃ | 盐浓度/(mol/kg) | 平均相对误差/% | 引用文献 |
---|---|---|---|---|---|---|
AEM | 常用锂盐 | 碳酸酯、羧酸酯、醚类、砜类 | 0~40 | 0.5~3 | 10 | [ |
LiPF6 | PC,PC+EC+DMC,PC+DEC+DMC EC+EMC,EC+DEC+DMC+EP | -40~80 | 0~3.5 | 5 | [ | |
LiBOB | PC+EA,EC+EMC | |||||
LiTFSI | PC+DME | |||||
LiFSI | FEC+GBL+EMC+MB | |||||
LiPF6 | EC+EMC,EC+EMC+MA,EC+DMC+MA | 0~40 | 0.5~2 | 5 | [ | |
NaPF6 | PC+EC | -10~50 | 0.1~2 | 7 | [ | |
分子动力学 | LiPF6 | PC,EC+EMC+MA,EC+DMC+MA EC+EMC,EC+DMC,FEC,EC+FEC,PC+FEC | 10~40 | 0.5~2 | 15 | [ |
LiFSI | DMC,EMC,PC | 0~60 | 0.1~0.5 | |||
LiTFSI | MP,DMC,EC,GLN,MGLN,PC EC-DEC,DMC-MP,BC-DMC | 25~85 | 0.1~1(mol/L) | |||
LiPF6 | PC+DEC,PC | -10~80 | 1 | — | [ | |
蒙特卡洛模拟 | LiClO4 | γBL | 25 | 0~0.8 | — | [ |
NaClO4 | γBL |
Table 3
Mathematical model of electrolyte conductivity"
方法 | 溶质 | 溶剂 | 温度/℃ | 盐浓度/(mol/kg) | 平均相对误差/% | 引用文献 |
---|---|---|---|---|---|---|
半经验模型 | LiBF4 | EC+DMC,GBL+2-MeTHF,GBL+1,2-DME,PC | 25 | 0~1.5 | 1.5 | [ |
LiClO4 | GBL+2-MeTHF,GBL+1,2-DME,GBL,PC GBL+1,1-DME,GBL+THF,PC+AN | 0~1.6 | ||||
LiAsF6 | GBL+2-MeTHF,GBL+1,2-DME,PC GBL+THF,PC+AN | 0~1.3 | ||||
LiPF6 | DMC,PC,EC+DMC,EC+EMC,EMC,PC+DEC | 25~75 | 0.1~2.9 | 1.87 | [ | |
LiBF4 | PC+DEC,PC | -20~60 | 0.25~2.32 | |||
LiPF6 | PC+DEC,PC+EC,PC | -80~60 | 0~2 | — | [ | |
LiClO4 | PC+AN | -35~35 | 0~1.4 | |||
LiBOB | PC+DEC,PC+EC | -40~60 | 0~2.5 | |||
LiBF4 | PC+DEC,PC+EC,PC | -80~60 | 0.2~2.1 | |||
数理统计方法 | LiPF6 | PC+EC | 25 | 寻找最优电导率 | [ | |
LiBOB | PC+EC+DMC,PC+EC+DMC+EA PC+EC+DMC+EMC | -25,25 | ||||
LiBOB | EC-DEC | 25,50 | [ | |||
LiPF6 | EC+EMC+DEC+DMC+EA+MP+EP | -10~45 | [ | |||
LiPF6 | EC+EMC+DMC | -40~40 | [ |
1 | LOGAN E R, TONITA E M, GERING K L, et al. A critical evaluation of the advanced electrolyte model[J]. Journal of the Electrochemical Society, 2018, 165(14): A3350-A3359. |
2 | LI Q, CAO Z, WAHYUDI W, et al. Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries[J]. ACS Energy Letters, 2020, 6(1): 69-78. |
3 | MING J, LI M, KUMAR P, et al. Redox species-based electrolytes for advanced rechargeable lithium-ion battery[J]. ACS Energy Letters, 2016, 1(3): 529-534. |
4 | EBELING W, MALCHOW H. Bifurcations in a bistable reaction-Diffusion system[J]. Annalen der Physik, 1979, 491(2): 121-134. |
5 | JUSTICE J C, JUSTICE M C, MICHELETTI C. Ion pairs as a theoretical limit case concept at high dilution for equilibrium and transport excess properties[J]. Pure and Applied Chemistry, 1981, 53(7): 1291-1299. |
6 | CAILLOL J M, LEVESQUE D, WEIS J J. Theoretical calculation of ionic solution properties[J]. The Journal of Chemical Physics, 1986, 85(11): 6645-6657. |
7 | DE DIEGO A, USOBIAGA A, FERNÁNDEZ L A, et al. Application of the electrical conductivity of concentrated electrolyte solutions to industrial process control and design: From experimental measurement towards prediction through modelling[J]. TrAC Trends in Analytical Chemistry, 2001, 20(2): 65-78. |
8 | KRUMGALZ B, BARTHEL J. Conductivity study of electrolyte solutions in dimethylformamide at various temperatures[J]. Zeitschrift Für Physikalische Chemie, 1984, 142: 167-178. |
9 | PETROWSKY M, FRECH R. Application of the compensated arrhenius formalism to self-diffusion: Implications for ionic conductivity and dielectric relaxation[J]. The Journal of Physical Chemistry B, 2010, 114(26): 8600-8605. |
10 | HAN H B, ZHOU S S, ZHANG D J, et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties[J]. Journal of Power Sources, 2011, 196(7): 3623-3632. |
11 | GU G Y, BOUVIER S, WU C, et al. 2-methoxyethyl (methyl) carbonate-based electrolytes for Li-ion batteries[J]. Electrochimica Acta, 2000, 45(19): 3127-3139. |
12 | STALLWORTH P E, FONTANELLA J J, WINTERSGILL M C, et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes[J]. Journal of Power Sources, 1999, 81/82: 739-747. |
13 | GU G Y, LAURA R, ABRAHAM K M. Conductivity-temperature behavior of organic electrolytes[J]. Electrochemical and solid-state letters, 1999, 2(10): 486. |
14 | FONTANELLA J J, WINTERSGILL M C, IMMEL J J. Dynamics in propylene carbonate and propylene carbonate containing LiPF6[J]. The Journal of Chemical Physics, 1999, 110(11): 5392-5402. |
15 | STICKEL F, FISCHER E W, RICHERT R. Dynamics of glass-forming liquids. II. Detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data[J]. The Journal of Chemical Physics, 1996, 104(5): 2043-2055. |
16 | MATSUDA Y, MORITA M, YAMASHITA T. Conductivity of the LiBF4/mixed ether electrolytes for secondary lithium cells[J]. Journal of the Electrochemical Society, 1984, 131: 2821-2827. |
17 | BARTHEL J, GORES H. Data on transport properties of electrolyte solutions for applied research and technology[J]. Pure and Applied Chemistry, 1985, 57: 1071-1082. |
18 | FUOSS R M. Review of the theory of electrolytic conductance[J]. Journal of Solution Chemistry, 1978, 7(10): 771-782. |
19 | DEBYE P, HUCKEL E. De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes[J]. Physikalische Zeitschrift, 1923, 24(9): 185-206. |
20 | FUOSS R M, KRAUS C A. Properties of electrolytic solutions. IV. The conductance minimum and the formation of triple ions due to the action of coulomb forces1[J]. Journal of the American Chemical Society, 1933, 55(6): 2387-2399. |
21 | FUOSS R M, HSIA K L. Association of 1-1 salts in water[J]. Proceedings of the National Academy of Sciences of the United States of America, 1967, 57(6): 1550-1557. |
22 | FUOSS R M. Parametric analysis of conductance data[J]. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(11): 4491-4495. |
23 | FUOSS R M. Conductance-concentration function for associated symmetrical electrolytes. Supplementary comments[J]. The Journal of Physical Chemistry, 1976, 80: 2091-2093. |
24 | FUOSS R M. Paired ions: Dipolar pairs as subset of diffusion pairs[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(1): 16-20. |
25 | QUINT J, VIALLARD A. The relaxation field for the general case of electrolyte mixtures[J]. Journal of Solution Chemistry, 1978, 7(3): 137-153. |
26 | QUINT J, VIALLARD A. The electrophoretic effect for the case of electrolyte mixtures[J]. Journal of Solution Chemistry, 1978, 7(7): 525-531. |
27 | FUOSS R M, ONSAGER L. Conductance of strong electrolytes at finite dilutions[J]. Proceedings of the National Academy of Sciences, 1955, 41(5): 274-283. |
28 | FUOSS R M, ONSAGER L. Conductance of unassociated electrolytes[J]. The Journal of Physical Chemistry, 1957, 61(5): 668-682. |
29 | FUOSS R M, ONSAGER L, SKINNER J F. The conductance of symmetrical electrolytes. V. the conductance Equation1, 2[J]. The Journal of Physical Chemistry, 1965, 69(8): 2581-2594. |
30 | CHANDRA A, BAGCHI B. Ion conductance in electrolyte solutions[J]. The Journal of Chemical Physics, 1999, 110(20): 10024-10034. |
31 | BERNARD O, KUNZ W, TURQ P, et al. Conductance in electrolyte solutions using the mean spherical approximation[J]. Journal of Physical Chemistry, 1992, 96(9): 3833-3840. |
32 | TURQ P, BLUM L, BERNARD O, et al. Conductance in associated electrolytes using the mean spherical approximation[J]. The Journal of physical chemistry, 1995, 99(2): 822-827. |
33 | 韩景立. 应用平均球近似理论计算锂盐有机溶液电导率[J]. 化工学报, 2004, 55(2): 268-270. |
HAN J L. Calculation of conductance for organic solutions of lithium salt using mean spherical approximation theory[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(2): 268-270. | |
34 | EBELING W, ROSE J. Conductance theory of concentrated electrolytes in an MSA-type approximation[J]. Journal of Solution Chemistry, 1981, 10(9): 599-609. |
35 | BARTHEL, KRIENKE, HOLOVKO, et al. The application of the associative mean spherical approximation in the theory of nonaqueous electrolyte solutions[J]. Condensed Matter Physics, 2000, 3: 657. |
36 | WANG P M, ANDERKO A, YOUNG R. Modeling electrical conductivity in concentrated and mixed-solvent electrolyte solutions[J]. Industrial & Engineering Chemistry Research, 2004, 43: 8083-8092. |
37 | VARELA L M, CARRETE J, TURMINE M, et al. Pseudolattice theory of the surface tension of ionic liquid-water mixtures[J]. The Journal of Physical Chemistry B, 2009, 113(37): 12500-12505. |
38 | VARELA L M, GARCIA M, SARMIENTO F, et al. Pseudolattice theory of strong electrolyte solutions[J]. The Journal of Chemical Physics, 1997, 107(16): 6415-6419. |
39 | CHAGNES A, CARRÉ B, WILLMANN P, et al. Ion transport theory of nonaqueous electrolytes. LiClO4 in γ-butyrolactone: The quasi lattice approach[J]. Electrochimica Acta, 2001, 46(12): 1783-1791. |
40 | SELF J, FONG K D, PERSSON K A. Transport in superconcentrated LiPF6 and LiBF4/propylene carbonate electrolytes[J]. ACS Energy Letters, 2019, 4(12): 2843-2849. |
41 | 李以圭, 李春喜. 电解质溶液的分子热力学模型研究进展[J]. 化学进展, 1996(2): 155-161. |
42 | 杜燕萍, 刘斌, 侯海云, 等. 电解质溶液热力学模型的研究进展[J]. 当代化工, 2016, 45(11): 2632-2637. |
DU Y P, LIU B, HOU H Y, et al. Research progress in thermodynamic models of electrolyte solution[J]. Contemporary Chemical Industry, 2016, 45(11): 2632-2637. | |
43 | GERING K L. Prediction of electrolyte conductivity: Results from a generalized molecular model based on ion solvation and a chemical physics framework[J]. Electrochimica Acta, 2017, 225: 175-189. |
44 | DAVE A, GERING K L, MITCHELL J M, et al. Benchmarking conductivity predictions of the advanced electrolyte model (AEM) for aqueous systems[J]. Journal of The Electrochemical Society, 2019, 167(1): 013514. |
45 | LOGAN E R, TONITA E M, GERING K L, et al. A study of the physical properties of Li-ion battery electrolytes containing esters[J]. Journal of The Electrochemical Society, 2018, 165(2): A21. |
46 | CHAYAMBUKA K, CARDINAELS R, GERING K L, et al. An experimental and modeling study of sodium-ion battery electrolytes[J]. Journal of Power Sources, 2021, 516: doi: 10.1016/j.jpowsour.2021.230658. |
47 | PANG M C, MARINESCU M, WANG H Z, et al. Mechanical behaviour of inorganic solid-state batteries: Can we model the ionic mobility in the electrolyte with Nernst-Einstein's relation? [J]. Physical Chemistry Chemical Physics: PCCP, 2021, 23(48): 27159-27170. |
48 | BERNARD O, AUPIAIS J. Conductivity of weak electrolytes for buffer solutions: Modeling within the mean spherical approximation[J]. Journal of Molecular Liquids, 2018, 272: 631-637. |
49 | ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. I. general method[J]. The Journal of Chemical Physics, 1959, 31(2): 459-466. |
50 | ALDER B J, WAINWRIGHT T E. Studies in molecular dynamics. II. behavior of a small number of elastic spheres[J]. The Journal of Chemical Physics, 1960, 33(5): 1439-1451. |
51 | CHHIH A, TURQ P, BERNARD O, et al. Transport coefficients and apparent charges of concentrated electrolyte solutions-Equations for practical use[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1994, 98(12): 1516-1525. |
52 | BABA T, KAJITA S, SHIGA T, et al. Fast evaluation technique for the shear viscosity and ionic conductivity of electrolyte solutions[J]. Scientific Reports, 2022, 12: 7291. |
53 | KUBISIAK P, EILMES A. Estimates of electrical conductivity from molecular dynamics simulations: How to invest the computational effort[J]. The Journal of Physical Chemistry B, 2020, 124(43): 9680-9689. . |
54 | BORODIN O, SMITH G D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: Ethylene carbonate electrolytes doped with LiPF6[J]. The Journal of Physical Chemistry B, 2009, 113(6): 1763-1776. |
55 | CHAE Y, LIM C, JEON J, et al. Lithium-ion solvation structure in organic carbonate electrolytes at low temperatures[J]. The Journal of Physical Chemistry Letters, 2022, 13(33): 7881-7888. |
56 | OZAKI H, KURATANI K, SANO H, et al. A Monte-Carlo simulation of ionic conductivity and viscosity of highly concentrated electrolytes based on a pseudo-lattice model[J]. The Journal of Chemical Physics, 2017, 147(3): 034904. |
57 | HOLOVKO M. Concept of ion association in the theory of electrolyte solutions[C]//Ionic Soft Matter: Modern Trends in Theory and Applications, 2005: 45-81. |
58 | VALØEN L O, REIMERS J N. Transport properties of LiPF6-based Li-ion battery electrolytes[J]. Journal of The Electrochemical Society, 2005, 152(5): A882. |
59 | BARTHEL J, GERBER R, GORES H J. The temperature dependence of the properties of electrolyte solutions. VI. Triple ion formation in solvents of low permittivity exemplified by LiBF4 solutions in dimethoxyethane[J]. Berichte der Bunsengesellschaft für physikalische Chemie, 1984, 88(7): 616-622. |
60 | CASTEEL J F, AMIS E S. Conductance of sodium perchlorate in water-N-methylacetamide (NMA) solvent system[J]. Journal of Chemical & Engineering Data, 1974, 19(2): 121-128. |
61 | CASTEEL J, AMIS E S. Specific conductance of concentrated solutions of magnesium salts in water-ethanol system[J]. Journal of Chemical & Engineering Data, 1972, 17: 55-59. |
62 | WERBLAN L, BAŁKOWSKA A. Concentrated electrolyte solutions in organic solvents. Their specific conductance and analysis of Casteel—Amis equation[J]. Journal of Electroanalytical Chemistry, 1993, 354(1/2): 25-38. |
63 | DE DIEGO A, MADARIAGA J M, CHAPELA E. Empirical model of general application to fit (k, c, T) experimental data from concentrated aqueous electrolyte solutions[J]. Electrochimica Acta, 1997, 42(9): 1449-1456. |
64 | DING M S, XU K, JOW T R. Conductivity and viscosity of PC-DEC and PC-EC solutions of LiBOB[J]. Journal of The Electrochemical Society, 2004, 152(1): A132. |
65 | DING M. Casteel-Amis equation: Its extension from univariate to multivariate and its use as a two-parameter function[J]. Journal of Chemical & Engineering Data, 2004, 49: 1469-1474. |
66 | DING M. Electrolytic conductivity and glass transition temperature as functions of salt content, solvent composition, or temperature for LiPF6 in propylene carbonate + diethyl carbonate[J]. Journal of Chemical & Engineering Data, 2003, 49: 1102-1109. |
67 | ZHANG W T, CHEN X, WANG Y, et al. Experimental and modeling of conductivity for electrolyte solution systems[J]. ACS Omega, 2020, 5(35): 22465-22474. |
68 | LUNDGREN H, BEHM M, LINDBERGH G. Electrochemical characterization and temperature dependency of mass-transport properties of LiPF6 in EC: DEC[J]. Journal of the Electrochemical Society, 2014, 162(3): A413-A420. |
69 | YIM C H, ABU-LEBDEH Y. Connection between phase diagram, structure and ion transport in liquid, aqueous electrolyte solutions of lithium chloride[J]. Journal of The Electrochemical Society, 2018, 165(3): A547. |
70 | SCHWEIGER H G, MULTERER M, SCHWEIZER-BERBERICH M, et al. Finding conductivity optima of battery electrolytes by conductivity measurements guided by a simplex algorithm[J]. Journal of the Electrochemical Society, 2005, 152(3): A577. |
71 | HUANG J Y, YU B T, LI F S, et al. Forecasting conductivities of LiBOB-EC/DEC electrolytes by the mass triangle model[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 463-467. |
72 | XIAO L F, CAO Y L, AI X P, et al. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J]. Electrochimica Acta, 2004, 49(27): 4857-4863. |
73 | DOUCEY L, REVAULT M, LAUTIÉ A, et al. A study of the Li/Li+ couple in DMC and PC solvents: Part 1: Characterization of LiAsF6/DMC and LiAsF6/PC solutions[J]. Electrochimica Acta, 1999, 44(14): 2371-2377. |
74 | 周思飞, 李骏, 张道明, 等. 基于数理统计方法的锂电池电解液电导率优化设计[J].储能科学与技术, 2022, 11(10): 3364-3370. |
ZHOU S F, LI J, ZHANG D M, et al. Optimization design of electrolyte conductivity of Lithium ion battery based on statistics method[J]. Energy Storage Science and Technology, 2022, 11(10): 3364-3370. |
[1] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[2] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[3] | Yongsheng SHI, Jin LI, Jiarui REN, Kai ZHANG. Prediction of residual service life of lithium-ion battery using WOA-XGBoost [J]. Energy Storage Science and Technology, 2022, 11(10): 3354-3363. |
[4] | Wenjing CHENG, Tinglong PAN. Prediction for SOC of lithium-ion batteries by estimating the distribution algorithm with LSSVM [J]. Energy Storage Science and Technology, 2020, 9(6): 1948-1953. |
[5] | Lingzhi YI, Zongguang ZHANG, Chaodong FAN, Xianguang LUO, Wang LI, Wenhan LIU. Life prediction of lithium battery based on EEMD-GSGRU [J]. Energy Storage Science and Technology, 2020, 9(5): 1566-1573. |
[6] | ZHAO Guozhu, ZHAO Xiaohe, XU Xiaoming, GAO Maoqing. Air cooling strategy of power battery based on minimum energy consumption [J]. Energy Storage Science and Technology, 2019, 8(4): 751-758. |
[7] | YAN Gangui, FENG Kaixiang, LIU Jia, LI Junhui, WANG Yue, SUN Zhaojian, LI Hongbo. A control strategy for energy storage system based on wind power prediction error interval [J]. Energy Storage Science and Technology, 2015, 4(4): 388-393. |
[8] | FANG Mou, ZHAO Xiao, CHEN Jingbo, SHANG Yuming, LI Jianjun, HE Xiangming, MAO Zongqiang. A case study of Japan airlines B-787 battery fire [J]. Energy Storage Science and Technology, 2014, 3(1): 42-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||