Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3733-3740.doi: 10.19799/j.cnki.2095-4239.2022.0382
• Energy Storage Materials and Devices • Previous Articles Next Articles
Junfei ZHOU1(), Xingpeng CAI1, Hao DING1, Xiaoling CUI1,2()
Received:
2022-07-07
Revised:
2022-08-06
Online:
2022-12-05
Published:
2022-12-29
Contact:
Xiaoling CUI
E-mail:zjf20001018@163.com;xlcuilw@163.com
CLC Number:
Junfei ZHOU, Xingpeng CAI, Hao DING, Xiaoling CUI. Effect of anionic redox reaction on lithium-rich manganese-based materials and its modification strategy[J]. Energy Storage Science and Technology, 2022, 11(12): 3733-3740.
1 | WANG J X, LIANG Z, ZHAO Y, et al. Direct conversion of degraded LiCoO2 cathode materials into high-performance LiCoO2: A closed-loop green recycling strategy for spent lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 768-776. |
2 | CHANG Z, QIAO Y, YANG H J, et al. Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve[J]. Angewandte Chemie (International Ed in English), 2021, 60(28): 15572-15581. |
3 | NUMATA K, SAKAKI C, YAMANAKA S. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3for cathode materials of secondary lithium batteries[J]. Chemistry Letters, 1997, 26(8): 725-726. |
4 | KALYANI P, CHITRA S, MOHAN T, et al. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode[J]. Journal of Power Sources, 1999, 80(1/2): 103-106. |
5 | YU H J, SO Y G, KUWABARA A, et al. Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide[J]. Nano Letters, 2016, 16(5): 2907-2915. |
6 | GRIMAUD A, HONG W T, SHAO-HORN Y, et al. Anionic redox processes for electrochemical devices[J]. Nature Materials, 2016, 15(2): 121-126. |
7 | LI X, QIAO Y, GUO S H, et al. Direct visualization of the reversible O2 -/O- redox process in Li-rich cathode materials[J]. Advanced Materials, 2018, 30(14): doi: 10.1002/adma.201705197. |
8 | ZHENG H F, HAN X, GUO W B, et al. Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries[J]. Materials Today Energy, 2020, 18: doi:10.1016/j.mtener.2020.100518. |
9 | YU H J, ISHIKAWA R, SO Y G, et al. Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries[J]. Angewandte Chemie, 2013, 52(23): 5969-5973. |
10 | JARVIS K A, DENG Z Q, ALLARD L F, et al. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16): 3614-3621. |
11 | LI B, XIA D G. Anionic redox in rechargeable lithium batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201701054. |
12 | 康若彤, 肖晶, 孙一诺, 等. 阴离子氧化还原反应对富锂层状材料性能影响研究进展[J]. 聊城大学学报(自然科学版), 2021, 34(2): 49-58. |
KANG R T, XIAO J, SUN Y N, et al. Research development on the effect of anionic redox reaction on the properties of Li-rich layered materials[J]. Journal of Liaocheng University (Natural Science Edition), 2021, 34(2): 49-58. | |
13 | SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8(7): 692-697. |
14 | LI Q Y, DE NING, WONG D, et al. Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy[J]. Nature Communications, 2022, 13: 1123. |
15 | 王敏君. 锂离子电池富锂锰基正极材料的制备及改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
WANG M J. Preparation and modification of lithium rich manganese based cathode materials for lithium ion battery[D]. Harbin: Harbin Institute of Technology, 2019. | |
16 | CHEN Q, PEI Y, CHEN H W, et al. Highly reversible oxygen redox in layered compounds enabled by surface polyanions[J]. Nature Communications, 2020, 11: 3411. |
17 | HOUSE R A, REES G J, PÉREZ-OSORIO M A, et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk[J]. Nature Energy, 2020, 5(10): 777-785. |
18 | ZHANG J C, CHENG F Y, CHOU S L, et al. Tuning oxygen redox chemistry in Li-rich Mn-based layered oxide cathodes by modulating cation arrangement[J]. Advanced Materials, 2019, 31(42): doi: 10.1002/adma.201901808. |
19 | TANG Z K, XUE Y F, TEOBALDI G, et al. The oxygen vacancy in Li-ion battery cathode materials[J]. Nanoscale Horizons, 2020, 5(11): 1453-1466. |
20 | GENT W E, LIM K, LIANG Y F, et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides[J]. Nature Communications, 2017, 8: 2091. |
21 | XU B, FELL C R, CHI M F, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study[J]. Energy & Environmental Science, 2011, 4(6): 2223. |
22 | EUM D, KIM B, KIM S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes[J]. Nature Materials, 2020, 19(4): 419-427. |
23 | MOHANTY D, HUQ A, PAYZANT E A, et al. Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: Insight into the crystal structure[J]. Chemistry of Materials, 2013, 25(20): 4064-4070. |
24 | CUI S L, WANG Y Y, LIU S, et al. Evolution mechanism of phase transformation of Li-rich cathode materials in cycling[J]. Electrochimica Acta, 2019, 328: doi: 10.1016/j.electacta.2019.135109. |
25 | XIE Y, YIN J, CHEN X, et al. Synergistic effect of Mn3+ formation-migration and oxygen loss on the near surface and bulk structural changes in single crystalline lithium-rich oxides[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3891-3898. |
26 | VIVEKANANTHA M, SUNDHAR ARUL SARAVANAN R, KUMAR NAYAK P, et al. Synergistic-effect of high Ni content and Na dopant towards developing a highly stable Li-Rich cathode in Li-ion batteries[J]. Chemical Engineering Journal, 2022, 444: doi: 10.1016/j.cej.2022.136503. |
27 | ALI S E, OLSZEWSKI W, SORRENTINO A, et al. Local interactions governing the performances of lithium- and manganese-rich cathodes[J]. The Journal of Physical Chemistry Letters, 2021, 12(4): 1195-1201. |
28 | SHEN S Y, HONG Y H, ZHU F C, et al. Tuning electrochemical properties of Li-rich layered oxide cathode by adjusting Co/Ni ratio and mechanism investigation using in situ XRD and OEMS[J]. ACS Applied Materials & Interfaces, 2018 10(15):12666-12677. |
29 | LI Q Y, NING D, ZHOU D, et al. The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials[J]. Journal of Materials Chemistry A, 2020, 8(16): 7733-7745. |
30 | PEI Y, CHEN Q, WANG M Y, et al. Reviving reversible anion redox in 3d-transition-metal Li rich oxides by introducing surface defects[J]. Nano Energy, 2020, 71: doi: 10.1016/j.nanoen.2020.104644. |
31 | LIU J D, WU Z H, YU M, et al. Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich Mn-based cathode materials[J]. Small, 2022, 18(10): doi: 10.1002/smll.202106337. |
32 | YU H, GAO Y, LIANG X H. Slightly fluorination of Al2O3 ALD coating on Li1.2Mn0.54Co0.13Ni0.13O2 electrodes: Interface reaction to create stable solid permeable interphase layer[J]. Journal of the Electrochemical Society, 2019, 166(10): A2021-A2027. |
33 | RASTGOO-DEYLAMI M, JAVANBAKHT M, OMIDVAR H. Enhanced performance of layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2[J]. Solid State Ionics, 2019, 331: 74-88. |
34 | ZHOU Z W, LUO Z Y, HE Z J, et al. Suppress voltage decay of lithium-rich materials by coating layers with different crystalline states[J]. Journal of Energy Chemistry, 2021, 60: 591-598. |
35 | DING X, LI Y X, CHEN F, et al. In situ formation of LiF decoration on a Li-rich material for long-cycle life and superb low-temperature performance[J]. Journal of Materials Chemistry A, 2019, 7(18): 11513-11519. |
36 | NIU B B, LI J L, LIU Y Y, et al. Re-understanding the function mechanism of surface coating: Modified Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathodes with YF3 for high performance lithium-ions batteries[J]. Ceramics International, 2019, 45(9): 12484-12494. |
37 | SU Y F, YUAN F Y, CHEN L, et al. Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating[J]. Journal of Energy Chemistry, 2020, 51: 39-47. |
38 | NIE X K, HOU G M, XU Z, et al. Lewis acidity organoboron-modified Li-rich cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials Interfaces, 2021, 8(9): doi: 10.1002/admi.202002113. |
39 | PENG J, LI Y, CHEN Z, et al. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide[J]. ACS Nano, 2021: 11607-11618. |
40 | YIN C, WEN X H, WAN L Y, et al. Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides[J]. Journal of Power Sources, 2021, 503: doi: 10.1016/j.jpowsour.2021.230048. |
41 | MENG J X, XU L S, MA Q X, et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes[J]. Advanced Functional Materials, 2022, 32(19): doi: 10.1002/adfm.202113013. |
42 | HU K H, REN L, FAN W F, et al. Tuning redox activity through delithiation induced protective layer and Fe-O coordination for Li-rich cathode with improved voltage and cycle performance[J]. Journal of Energy Chemistry, 2022, 71: 266-276. |
43 | LI S Y, FU X L, LIANG Y W, et al. Enhanced structural stability of boron-doped Layered@Spinel@Carbon heterostructured lithium-rich manganese-based cathode materials[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9311-9324. |
[1] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[2] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[3] | Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[6] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[7] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[8] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[9] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[10] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[13] | Da WANG, Hang ZHOU, Yao JIAO, Jiamin WANG, Wei SHI, Bowei PU, Mingqing LI, Fanghua NING, Yuan REN, Jia YU, Yajie LI, Biao LI, Siqi SHI. Understanding and performance prediction of ions-intercalation electrochemistry: From crystal field theory to ligand field theory [J]. Energy Storage Science and Technology, 2022, 11(2): 409-433. |
[14] | Jiukang TENG, Ningning WU, Chang WANG, Qingjie WANG, Bin SHI. Preparation and electrochemical performance of high capacity chromium oxide Cr8O21 cathode materials for lithium primary batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3455-3462. |
[15] | Hongxiang JI, Yida WU, Zhou JIN, Mengyu TIAN, Junfeng HAO, Yuanjie ZHAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2022 to Sept. 30, 2022) [J]. Energy Storage Science and Technology, 2022, 11(11): 3423-3438. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||