Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 929-938.doi: 10.19799/j.cnki.2095-4239.2022.0049
Previous Articles Next Articles
Yajie LI1(), Geng ZHANG2(), Liting SHA1, Wei ZHAO1, Bin CHEN1, Da WANG1, Jia YU3, Siqi SHI1,3,4
Received:
2022-01-30
Revised:
2022-02-14
Online:
2022-03-05
Published:
2022-03-11
Contact:
Geng ZHANG
E-mail:liyajiejuly@shu.edu.cn;geng.zhang@kaust.edu.sa
CLC Number:
Yajie LI, Geng ZHANG, Liting SHA, Wei ZHAO, Bin CHEN, Da WANG, Jia YU, Siqi SHI. Phase-field simulation of dendrite growth in rechargeable batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 929-938.
Fig. 3
Schematic diagram of Li deposition on the electrode through (a) MSTF⊥AAO separator and (b) AAO separator, (c) galvanostatic cycling performance of Li-Li symmetric cells with AAO and MSTF⊥AAO, phase-field simulation of Li dendrite evolution under hybrid and single-layer separator: phase-field variable at 2 s (d)-(e) and 1 s (f)-(g), Li+ concentration at 1 s (h)-(i), Li+ concentration alone y=2.5 μm (j)"
1 | CHAO D L, ZHOU W H, XIE F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Science Advances, 2020, 6(21): doi: 10.1126/sciadv.aba4098. |
2 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
3 | LIN F, MARKUS I M, DOEFF M M, et al. Chemical and structural stability of lithium-ion battery electrode materials under electron beam[J]. Scientific Reports, 2014, 4: doi: 10.1038/srep05694. |
4 | KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. |
5 | KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279. |
6 | LIU H, CHENG X B, JIN Z H, et al. Recent advances in understanding dendrite growth on alkali metal anodes[J]. EnergyChem, 2019, 1(1): doi: 10.1016/j.enchem.2019.100003. |
7 | CHOUDHURY S, WEI S, OZHABES Y, et al. Designing solid-liquid interphases for sodium batteries[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00742-x. |
8 | WANG Q, ZHANG G, LI Y, et al. Application of phase-field method in rechargeable batteries[J]. npj Computational Materials, 2020, 6: 1-8. |
9 | ZHANG G, WANG Q, SHA L T, et al. Phase-field model and its application in electrochemical energy storage materials[J]. Acta Physica Sinica, 2020, 69(22): doi: 10.7498/aps.69.20201411. |
10 | ELY D R, GARCÍA R E. Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes[J]. Journal of the Electrochemical Society, 2013, 160(4): A662-A668. |
11 | GREGORY T D, HOFFMAN R J, WINTERTON R C. Nonaqueous electrochemistry of magnesium: Applications to energy storage[J]. Journal of the Electrochemical Society, 1990, 137(3): 775-780. |
12 | MATSUI M. Study on electrochemically deposited Mg metal[J]. Journal of Power Sources, 2011, 196(16): 7048-7055. |
13 | LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76: 270-274. |
14 | JÄCKLE M, GROß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. The Journal of Chemical Physics, 2014, 141(17): doi: 10.1063/1.4901055. |
15 | CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367. |
16 | BRISSOT C, ROSSO M, CHAZALVIEL J N, et al. Dendritic growth mechanisms in lithium/polymer cells[J]. Journal of Power Sources, 1999, 81/82: 925-929. |
17 | WANG A, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj Computational Materials, 2018, 4: doi: 10.1038/s41524-018-0064-0. |
18 | DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456. |
19 | GUYER J E, BOETTINGER W J, WARREN J A, et al. Phase field modeling of electrochemistry. Ⅰ. equilibrium[J]. Physical Review E, 2004, 69(2): doi: 10.1103/PhysRevE.69.021603. |
20 | GUYER J E, BOETTINGER W J, WARREN J A, et al. Phase field modeling of electrochemistry. Ⅱ. kinetics[J]. Physical Review E, 2004, 69(2): doi: 10.1103/PhysRevE.69.021604. |
21 | SHIBUTA Y, OKAJIMA Y, SUZUKI T. Phase-field modeling for electrodeposition process[J]. Science and Technology of Advanced Materials, 2007, 8(6): 511-518. |
22 | OKAJIMA Y, SHIBUTA Y, SUZUKI T. A phase-field model for electrode reactions with Butler-Volmer kinetics[J]. Computational Materials Science, 2010, 50(1): 118-124. |
23 | LIANG L Y, QI Y, XUE F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86: doi: 10.1103/PhysRevE.86.051609. |
24 | LIANG L Y, CHEN L Q. Nonlinear phase field model for electrodeposition in electrochemical systems[J]. Applied Physics Letters, 2014, 105(26): doi: 10.1063/1.4905341. |
25 | CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. |
26 | YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619. |
27 | ZHENG R T, QIAN S S, CHENG X, et al. FeNb11O29 nanotubes: Superior electrochemical energy storage performance and operating mechanism[J]. Nano Energy, 2019, 58: 399-409. |
28 | HONG Z J, VISWANATHAN V. Phase-field simulations of lithium dendrite growth with open-source software[J]. ACS Energy Letters, 2018, 3(7): 1737-1743. |
29 | HONG Z J, VISWANATHAN V. Prospect of thermal shock induced healing of lithium dendrite[J]. ACS Energy Letters, 2019, 4(5): 1012-1019. |
30 | JANA A, WOO S I, VIKRANT K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607. |
31 | TIAN H K, LIU Z, JI Y Z, et al. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes[J]. Chemistry of Materials, 2019, 31(18): 7351-7359. |
32 | ZHANG R, SHEN X, CHENG X B, et al. The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565. |
33 | SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11(10): doi: 10.1002/aenm.202003416. |
34 | SHEN X, ZHANG R, WANG S H, et al. The dynamic evolution of aggregated lithium dendrites in lithium metal batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37: 137-143. |
35 | CHEN C H, PAO C W. Phase-field study of dendritic morphology in lithium metal batteries[J]. Journal of Power Sources, 2021, 484: doi: 10.1016/j.jpowsour.2020.229203. |
36 | ZHANG J W, LIU Y P, WANG C G, et al. An electrochemical-mechanical phase field model for lithium dendrite[J]. Journal of the Electrochemical Society, 2021, 168(9): doi: 10.1149/1945-7111/ac22c7. |
37 | HONG Z J, AHMAD Z, VISWANATHAN V. Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes[J]. ACS Energy Letters, 2020, 5(8): 2466-2474. |
38 | REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12195-12204. |
39 | TAN J W, TARTAKOVSKY A M, FERRIS K, et al. Investigating the effects of anisotropic mass transport on dendrite growth in high energy density lithium batteries[J]. Journal of the Electrochemical Society, 2015, 163(2): A318-A327. |
40 | AHMAD Z, HONG Z J, VISWANATHAN V. Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(43): 26672-26680. |
41 | LI G, LIU Z, HUANG Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects[J]. Nature Energy, 2018, 3(12): 1076-1083. |
42 | JANA A, ELY D R, GARCÍA R E. Dendrite-separator interactions in lithium-based batteries[J]. Journal of Power Sources, 2015, 275: 912-921. |
43 | YANG J L, WANG C Y, WANG C C, et al. Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes[J]. Journal of Materials Chemistry A, 2020, 8(10): 5095-5104. |
[1] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[2] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[3] | Dongge QIAO, Xunliang LIU, Zhi WEN, Ruifeng DOU, Wenning ZHOU. Numerical analysis of inhibition of lithium dendrite growth by heating and pulse charging [J]. Energy Storage Science and Technology, 2022, 11(3): 1008-1018. |
[4] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[5] | Zhen YAO, Rui WANG, Xue YANG, Qi ZHANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Current situations and prospects of zinc-iron flow battery [J]. Energy Storage Science and Technology, 2022, 11(1): 78-88. |
[6] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[7] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
[8] | FAN Yaping, YAN Liqin, JIAN Dechao, LYU Taolin, YU Meng, WANG Zhenyu, ZHANG Quansheng, XIE Jingying. In situ detection of lithium dendrite in the failure of lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049. |
[9] | FANG Congcong, LIU Wen, WANG Yong, GUO Rui, PEI Haijuan, YU Shengxue, XIE Jingying. In suit physicial characterization of lithium anode [J]. Energy Storage Science and Technology, 2018, 7(S1): 54-62. |
[10] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
[11] | SHI Kai, AN Decheng, HE Yanbing, LI Baohua, KANG Feiyu. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. |
[12] | WANG Suijun, FU Kai, GUAN Yibiao, LIU Shuguang, XU Bin, FAN Maosong. Low temperature thermal safety performance of soft packaged lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2016, 5(2): 204-209. |
[13] | ZHU Jianyu, FENG Jiemin, GUO Zhansheng. In situ observation of lithium dendrite on the electrode in a lithium-ion battery [J]. Energy Storage Science and Technology, 2015, 4(1): 66-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||