Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1968-1979.doi: 10.19799/j.cnki.2095-4239.2021.0697
Previous Articles Next Articles
FENG Jinxin1(), LING Ziye1,2, FANG Xiaoming1,2, ZHANG Zhengguo1,2(
)
Received:
2021-12-22
Revised:
2022-02-02
Online:
2022-06-05
Published:
2022-06-13
Contact:
ZHANG Zhengguo
E-mail:cejinxin@mail.scut.edu.cn;cezhang@scut.edu.cn
CLC Number:
FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions[J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979.
1 | 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
LIN W Z, LING Z Y, FANG X M, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. | |
2 | 孙婉纯, 冯锦新, 张正国, 等. 相变储热技术用于被动式建筑节能的研究进展[J]. 化工进展, 2020, 39(5): 1824-1834. |
SUN W C, FENG J X, ZHANG Z G, et al. Research progress of phase change heat storage technology for passive energy conservation in buildings[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1824-1834. | |
3 | HO C J, LIN K H, RASHIDI S, et al. Experimental study on thermophysical properties of water-based nanoemulsion of n-eicosane PCM[J]. Journal of Molecular Liquids, 2021, 321: doi: 10.1016/j.molliq.2020.114760. |
4 | HO C J, JHENG S R, YANG T F, et al. Thermophysical properties of water-based nano-emulsion of tricosane—An Experimental investigation[J]. Case Studies in Thermal Engineering, 2021, 24: doi:10.1016/j.csite.2021.100849. |
5 | FISCHER L, MURA E, O'NEILL P, et al. Thermophysical properties of a phase change dispersion for cooling around 50 ℃[J]. International Journal of Refrigeration, 2020, 119: 410-419. |
6 | KAUFFELD M, GUND S. Ice slurry-history, current technologies and future developments[J]. International Journal of Refrigeration, 2019, 99: 264-271. |
7 | ZHANG P, MA Z W, WANG R Z. An overview of phase change material slurries: MPCS and CHS[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 598-614. |
8 | QIU Z Z, MA X L, LI P, et al. Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 246-262. |
9 | 石李明, 王文俊, 李伯耿, 等. 相变乳液的制备、性能与应用[J]. 材料科学与工程学报, 2013, 31(1): 142-147. |
SHI L M, WANG W J, LI B G, et al. Preparation, property and application of phase change material emulsions[J]. Journal of Materials Science and Engineering, 2013, 31(1): 142-147. | |
10 | WANG F X, LIN W Z, LING Z Y, et al. A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 218-234. |
11 | HO C J, HSU S T, JANG J H, et al. Experimental study on thermal performance of water-based nano-PCM emulsion flow in multichannel heat sinks with parallel and divergent rectangular mini-channels[J]. International Journal of Heat and Mass Transfer, 2020, 146: doi:10.1016/j.ijheatmasstransfer.2019.118861. |
12 | SIVAPALAN B, CHANDRAN M N, MANIKANDAN S, et al. Paraffin wax-water nanoemulsion: A superior thermal energy storage medium providing higher rate of thermal energy storage per unit heat exchanger volume than water and paraffin wax[J]. Energy Conversion and Management, 2018, 162: 109-117. |
13 | O'NEILL P, FISCHER L, REVELLIN R, et al. Phase change dispersions: A literature review on their thermo-rheological performance for cooling applications[J]. Applied Thermal Engineering, 2021, 192: doi:10.1016/j.applthermaleng.2021.116920. |
14 | ZHANG W P, QIN Y B, GAO Z H, et al. Phase behavior and stability of nano-emulsions prepared by D phase emulsification method[J]. Journal of Molecular Liquids, 2019, 285: 424-429. |
15 | XIANG N, YUAN Y P, SUN L L, et al. Simultaneous decrease in supercooling and enhancement of thermal conductivity of paraffin emulsion in medium temperature range with graphene as additive[J]. Thermochimica Acta, 2018, 664: 16-25. |
16 | ZHANG Z L, YUAN Y P, ZHANG N, et al. Experimental investigation on thermophysical properties of capric acid-lauric acid phase change slurries for thermal storage system[J]. Energy, 2015, 90: 359-368. |
17 | HUANG L, NOERES P, PETERMANN M, et al. Experimental study on heat capacity of paraffin/water phase change emulsion[J]. Energy Conversion and Management, 2010, 51(6): 1264-1269. |
18 | SHAO J J, DARKWA J, KOKOGIANNAKIS G. Development of a novel phase change material emulsion for cooling systems[J]. Renewable Energy, 2016, 87: 509-516. |
19 | 邹得球, 肖睿, 冯自平, 等. 一种适合潜热输送的高温相变石蜡乳状液的热性能[J]. 功能材料, 2012, 43(1): 84-87. |
ZOU D Q, XIAO R, FENG Z P, et al. Thermal performance of high melting points paraffin emulsions for latent heat transportation[J]. Journal of Functional Materials, 2012, 43(1): 84-87. | |
20 | ZHANG Z L, YUAN Y P, ZHANG N, et al. Thermophysical properties of some fatty acids/surfactants as phase change slurries for thermal energy storage[J]. Journal of Chemical & Engineering Data, 2015, 60(8): 2495-2501. |
21 | CHEN J, ZHANG P. Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media[J]. Applied Energy, 2017, 190: 868-879. |
22 | PORRAS M, SOLANS C, GONZÁLEZ C, et al. Studies of formation of W/O nano-emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249(1/2/3): 115-118. |
23 | CABALEIRO D, AGRESTI F, BARISON S, et al. Development of paraffinic phase change material nanoemulsions for thermal energy storage and transport in low-temperature applications[J]. Applied Thermal Engineering, 2019, 159: doi:10.1016/j.applthermaleng.2019.113868. |
24 | MANIKANDAN S, RAJAN K S. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management[J]. Energy Conversion and Management, 2017, 137: 74-85. |
25 | FISCHER L J, DHULIPALA S, VARANASI K K. Phase change dispersion made by condensation-emulsification[J]. ACS Omega, 2021, 6(50): 34580-34595. |
26 | MEI Z, XU J, SUN D J. O/W nano-emulsions with tunable PIT induced by inorganic salts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375(1/2/3): 102-108. |
27 | ZIA A, PENTZER E, THICKETT S, et al. Advances and opportunities of oil-in-oil emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 38845-38861. |
28 | DELGADO-SÁNCHEZ C, CUADRI A A, NAVARRO F J, et al. Formulation and processing of novel non-aqueous polyethylene glycol-in-silicone oil (o/o) phase change emulsions[J]. Solar Energy Materials and Solar Cells, 2021, 221: doi: 10.1016/j.solmat.2020.110898. |
29 | DELGADO-SÁNCHEZ C, PARTAL P, MARTÍN-ALFONSO M J, et al. Role of crystallinity on the thermal and viscous behaviour of polyethylene glycol-in-silicone oil (o/o) phase change emulsions[J]. Journal of Industrial and Engineering Chemistry, 2021, 103: 348-357. |
30 | ALLOUCHE J. Synthesis of organic and bioorganic nanoparticles: An overview of the preparation methods[M]//Nanomaterials: A Danger or a Promise? London: Springer London, 2012: 27-74. |
31 | WANG F X, FANG X M, ZHANG Z G. Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 176: 381-390. |
32 | KENTISH S, WOOSTER T J, ASHOKKUMAR M, et al. The use of ultrasonics for nanoemulsion preparation[J]. Innovative Food Science & Emerging Technologies, 2008, 9(2): 170-175. |
33 | KACI M, MEZIANI S, ARAB-TEHRANY E, et al. Emulsification by high frequency ultrasound using piezoelectric transducer: Formation and stability of emulsifier free emulsion[J]. Ultrasonics Sonochemistry, 2014, 21(3): 1010-1017. |
34 | JADHAV A J, HOLKAR C R, KAREKAR S E, et al. Ultrasound assisted manufacturing of paraffin wax nanoemulsions: Process optimization[J]. Ultrasonics Sonochemistry, 2015, 23: 201-207. |
35 | SOLANS C, SOLÉ I. Nano-emulsions: Formation by low-energy methods[J]. Current Opinion in Colloid & Interface Science, 2012, 17(5): 246-254. |
36 | KOMAIKO J S, MCCLEMENTS D J. Formation of food-grade nanoemulsions using low-energy preparation methods: A review of available methods[J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(2): 331-352. |
37 | MCCLEMENTS D J. Edible nanoemulsions: Fabrication, properties, and functional performance[J]. Soft Matter, 2011, 7(6): 2297-2316. |
38 | MORIMOTO T, KAWANA Y, SAEGUSA K, et al. Supercooling characteristics of phase change material particles within phase change emulsions[J]. International Journal of Refrigeration, 2019, 99: 1-7. |
39 | KAWANAMI T, TOGASHI K, FUMOTO K, et al. Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media[J]. Energy, 2016, 117: 562-568. |
40 | GÜNTHER E, HUANG L, MEHLING H, et al. Subcooling in PCM emulsions-Part 2: Interpretation in terms of nucleation theory[J]. Thermochimica Acta, 2011, 522(1/2): 199-204. |
41 | RHAFIKI T E, KOUSKSOU T, JAMIL A, et al. Crystallization of PCMs inside an emulsion: Supercooling phenomenon[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2588-2597. |
42 | GOLEMANOV K, TCHOLAKOVA S, DENKOV N D, et al. Selection of surfactants for stable paraffin-in-water dispersions, undergoing solid-liquid transition of the dispersed particles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2006, 22(8): 3560-3569. |
43 | HAGELSTEIN G, GSCHWANDER S. Reduction of supercooling in paraffin phase change slurry by polyvinyl alcohol[J]. International Journal of Refrigeration, 2017, 84: 67-75. |
44 | SAKAI T, NAKAGAWA Y, IIJIMA K. Hexadecane-in-water emulsions as thermal-energy storage and heat transfer fluids: Connections between phase-transition temperature and period of hexadecane droplets dispersed in hexadecane-in-water emulsions and characteristics of surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 394-402. |
45 | LU W, TASSOU S A. Experimental study of the thermal characteristics of phase change slurries for active cooling[J]. Applied Energy, 2012, 91(1): 366-374. |
46 | AGRESTI F, FEDELE L, ROSSI S, et al. Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications[J]. Solar Energy Materials and Solar Cells, 2019, 194: 268-275. |
47 | ZHANG X Y, NIU J L, WU J Y. Evaluation and manipulation of the key emulsification factors toward highly stable PCM-water nano-emulsions for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 219: doi:10.1016/j.solmat.2020.110820. |
48 | MORIMOTO T, KUMANO H. Nucleation promoting effect of fat shell on phase change material particles dispersed in an emulsion for thermal energy storage medium[J]. Journal of Energy Storage, 2020, 31: doi:10.1016/j.est.2020.101637. |
49 | HUANG L, PETERMANN M, DOETSCH C. Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications[J]. Energy, 2009, 34(9): 1145-1155. |
50 | IACOB-TUDOSE E T, MAMALIGA I, IOSUB A V. TES nanoemulsions: A review of thermophysical properties and their impact on system design[J]. Nanomaterials (Basel, Switzerland), 2021, 11(12): 3415. |
51 | ZHANG G H, YU Z J, CUI G M, et al. Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity[J]. Renewable Energy, 2020, 151: 542-550. |
52 | ZHANG X Y, NIU J L, WU J Y. Development and characterization of novel and stable silicon nanoparticles-embedded PCM-in-water emulsions for thermal energy storage[J]. Applied Energy, 2019, 238: 1407-1416. |
53 | ZHANG X Y, NIU J L, ZHANG S, et al. PCM in water emulsions: Supercooling reduction effects of nano-additives, viscosity effects of surfactants and stability[J]. Advanced Engineering Materials, 2015, 17(2): 181-188. |
54 | GÜNTHER E, SCHMID T, MEHLING H, et al. Subcooling in hexadecane emulsions[J]. International Journal of Refrigeration, 2010, 33(8): 1605-1611. |
55 | HUANG L, GÜNTHER E, DOETSCH C, et al. Subcooling in PCM emulsions—part 1: Experimental[J]. Thermochimica Acta, 2010, 509(1/2): 93-99. |
56 | CAO J H, HE Y J, FENG J X, et al. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge[J]. Applied Energy, 2020, 279: doi: 10.1016/j.apenergy.2020.115808. |
57 | BARISON S, CABALEIRO D, ROSSI S, et al. Paraffin-graphene oxide hybrid nano emulsions for thermal management systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: doi:10.1016/j.colsurfa.2021.127132. |
58 | FENG J X, HUANG J C, LING Z Y, et al. Performance enhancement of a photovoltaic module using phase change material nanoemulsion as a novel cooling fluid[J]. Solar Energy Materials and Solar Cells, 2021, 225: doi:10.1016/j.solmat.2021.111060. |
59 | LIU L, NIU J L, WU J Y. Formulation of highly stable PCM nano-emulsions with reduced supercooling for thermal energy storage using surfactant mixtures[J]. Solar Energy Materials and Solar Cells, 2021, 223: doi: 10.1016/j.solmat.2021.110983. |
60 | WANG F X, GUO J X, LI S H, et al. Facile self-assembly approach to construct a novel MXene-decorated nano-sized phase change material emulsion for thermal energy storage[J]. Ceramics International, 2022, 48(4): 4722-4731. |
61 | 侯长军, 刘勇, 霍丹群, 等. 具有良好稳定性的石蜡乳液的制备及改进[J]. 应用化工, 2010, 39(2): 175-178, 181. |
HOU C J, LIU Y, HUO D Q, et al. Preparation and improvement of paraffin emulsion with good stability[J]. Applied Chemical Industry, 2010, 39(2): 175-178, 181. | |
62 | GSCHWANDER S, NIEDERMAIER S, GAMISCH S, et al. Storage capacity in dependency of supercooling and cycle stability of different PCM emulsions[J]. Applied Sciences, 2021, 11(8): 3612. |
63 | ZOU D Q, FENG Z P, XIAO R, et al. Preparation and flow characteristic of a novel phase change fluid for latent heat transfer[J]. Solar Energy Materials and Solar Cells, 2010, 94(12): 2292-2297. |
64 | 朱升干, 郑典模, 张晓婕, 等. 响应面分析法优化乳化石蜡制备工艺[J]. 化学工程, 2010, 38(6): 87-90. |
ZHU S G, ZHENG D M, ZHANG X J, et al. Optimization of preparation technology for paraffin emulsion via response surface methodology[J]. Chemical Engineering (China), 2010, 38(6): 87-90. | |
65 | PUUPPONEN S, SEPPÄLÄ A, VARTIA O, et al. Preparation of paraffin and fatty acid phase changing nanoemulsions for heat transfer[J]. Thermochimica Acta, 2015, 601: 33-38. |
66 | DANOV K D, KRALCHEVSKA S D, KRALCHEVSKY P A, et al. Mixed solutions of anionic and zwitterionic surfactant (Betaine): Surface-tension isotherms, adsorption, and relaxation kinetics[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004, 20(13): 5445-5453. |
67 | MCCLEMENTS D J, JAFARI S M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review[J]. Advances in Colloid and Interface Science, 2018, 251: 55-79. |
68 | VILASAU J, SOLANS C, GÓMEZ M J, et al. Stability of oil-in-water paraffin emulsions prepared in a mixed ionic/nonionic surfactant system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389(1/2/3): 222-229. |
69 | 黎宇坤, 马素德, 唐国翌. 对一种新型相变微乳液的物理性质及稳定性的研究[J]. 功能材料, 2010, 41(10): 1813-1815. |
LI Y K, MA S D, TANG G Y. Research on physical properties and stability of phase change microemulsion[J]. Journal of Functional Materials, 2010, 41(10): 1813-1815. | |
70 | WANG F X, LIU J, FANG X M, et al. Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2016, 147: 101-107. |
71 | WANG F X, LING Z Y, FANG X M, et al. Optimization on the photo-thermal conversion performance of graphite nanoplatelets decorated phase change material emulsions[J]. Solar Energy Materials and Solar Cells, 2018, 186: 340-348. |
72 | ZHAO Q H, YANG W B, ZHANG H P, et al. Graphene oxide Pickering phase change material emulsions with high thermal conductivity and photo-thermal performance for thermal energy management[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 42-49. |
73 | POLLERBERG C, DOTSCH C. Phase changing slurries in cooling and cold supply networks:In 10th International Symposium on Disctrict Heating and Cooling, 2006[C]. Germany : Hannover,2006. |
74 | LIU L, LI J, NIU J L, et al. Evaluation of the energy storage performance of PCM nano-emulsion in a small tubular heat exchanger[J]. Case Studies in Thermal Engineering, 2021, 26: doi:10.1016/j.csite.2021.101156. |
75 | LIU L, ZHANG X Y, LIANG H B, et al. Cooling storage performance of a novel phase change material nano-emulsion for room air-conditioning in a self-designed pilot thermal storage unit[J]. Applied Energy, 2022, 308: doi:10.1016/j.apenergy.2021.118405. |
76 | LIANG H B, LIU L, ZHONG Z W, et al. Towards idealized thermal stratification in a novel phase change emulsion storage tank[J]. Applied Energy, 2022, 310: doi: 10.1016/j.apenergy.2022.118526. |
77 | DELGADO M, LÁZARO A, MAZO J, et al. Experimental analysis of a low cost phase change material emulsion for its use as thermal storage system[J]. Energy Conversion and Management, 2015, 106: 201-212. |
78 | DELGADO M, LÁZARO A, MAZO J, et al. Experimental analysis of a coiled stirred tank containing a low cost PCM emulsion as a thermal energy storage system[J]. Energy, 2017, 138: 590-601. |
79 | 王方娴. 高性能微/纳米相变乳液的制备、特性及其应用研究[D]. 广州: 华南理工大学, 2019. |
WANG F X. Researches on preparation, characteristics and applications of high-performance micro/nano-sized phase change material emulsions[D]. Guangzhou: South China University of Technology, 2019. | |
80 | WANG F X, CAO J H, LING Z Y, et al. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack[J]. Energy, 2020, 207: doi: 10.1016/j.energy.2020.118215. |
81 | CAO J H, FENG J X, FANG X M, et al. A delayed cooling system coupling composite phase change material and nano phase change material emulsion[J]. Applied Thermal Engineering, 2021, 191: doi:10.1016/j.applthermaleng.2021.116888. |
82 | LI Q, QIAO G, MURA E, et al. Experimental and numerical studies of a fatty acid based phase change dispersion for enhancing cooling of high voltage electrical devices[J]. Energy, 2020, 198: doi:10.1016/j.energy.2020.117280. |
83 | LI Q, MURA E, LI C, et al. Shape stability and flow behaviour of a phase change material based slurry in coupled fluid-thermo-electrical fields for electronic device cooling[J]. Applied Thermal Engineering, 2020, 173: doi:10.1016/j.applthermaleng.2020.115117. |
84 | LI Q, FISCHER L, QIAO G, et al. High performance cooling of a HVDC converter using a fatty acid ester-based phase change dispersion in a heat sink with double-layer oblique-crossed ribs[J]. International Journal of Energy Research, 2020, 44(7): 5819-5840. |
85 | FISCHER L, MURA E, QIAO G, et al. HVDC converter cooling system with a phase change dispersion[J]. Fluids, 2021, 6(3): 117. |
86 | YANG N X, WANG J, XU S W, et al. A comparative assessment of the battery liquid-cooling system employing two coolants: Phase change material emulsion and water[J]. International Journal of Energy Research, 2022, 46(5): 6498-6516. |
[1] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[2] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[3] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[4] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[5] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[6] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[7] | Ying SUN, Qin ZHAO, Bosi YIN, Tianyi MA. Performance of PTCDI//δ-MnO2 aqueous ammonium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1110-1120. |
[8] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[9] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[10] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[11] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[12] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[13] | Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. |
[14] | Xiaoguang ZHANG, Xiaonan PAN, Jinming LI, Li LIU, Yan HE. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(1): 127-135. |
[15] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||