Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2332-2343.doi: 10.19799/j.cnki.2095-4239.2021.0605
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Guojing LIU1(), Bingjie LI1, Xiaoyan HU1, Fen YUE2(), Jiqiang XU2
Received:
2021-10-10
Revised:
2021-11-20
Online:
2022-07-05
Published:
2022-06-29
Contact:
Fen YUE
E-mail:278053997@qq.com;396588503@qq.com
CLC Number:
Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china[J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343.
Table 1
Grid scale energy storage systems in NEM from 2017"
项目 | 容量 | 项目地点与配置 | 投运时间 |
---|---|---|---|
Hornsdale Power Reserve* | 100 MW/129 MWh | 和南澳大利亚州Hornsdale风电场共址建设,但储能电站拥有自己的连接点 | 2017年12月 |
Dalrymple ESCRI battery | 30 MW/8 MWh | 安装在南澳大利亚州Dalrymple变电站,靠近Wattle Point风电场 | 2018年9月 |
Ballarat Energy Storage System | 30 MW/30 MWh | 位于维多利亚州Ballarat区域终端站的独立系统 | 2018年11月 |
Gannawarra Energy Storage System | 30 MW/25 MWh | 位于维多利亚州,与Gannawarra光伏电站共址 | 2019年3月 |
Lake Bonney | 25 MW/52 MWh | 位于南澳大利亚州,与Lake Bonney风电场共址,并共享接入Mayurra变电站的连接点 | 2019年10月 |
Table 2
Australia Provincial Energy Storage Policies"
州/区域 | 政策/激励措施 | 可再生能源目标 |
---|---|---|
首都堪培拉 | 2500万美元下一代电池储能计划,用户获得的补贴最高可达825美元/kW | 到2020年100% |
新南威尔士州 | 对购买并安装电池储能系统的家庭提供最高9000美元的贷款,对购买屋顶光储系统的家庭用户提供高达14000美元的贷款。高额的FIT的关闭刺激着户用电池储能的投资 | 到2030年增加12 GW可再生能源 |
北领地 | 目前没有专门的政策。Home Improvement Scheme此前为购买光伏和电池的人提供 4000美元的代金券,参与者被要求必须支付系统价格的50%以上 | 到2030年50% |
昆士兰州 | 2018年提供免息贷款和返款以刺激电池的使用;凡是在州数据库上注册他们储能系统的所有者能获得50美元奖励;为1000个家庭,提供最高3000美元的退税和1万美元的免息贷款 | 到2030年50% |
南澳大利亚州 | 家庭电池计划HBS:1亿美元补助计划促进电池在4万个家庭的使用;1亿美元CEFC贷款;1.5亿美元Renewable Technology Fund支持大量的可调度的可再生能源项目;5千万美元大规模储能基金 | 到2030年100% |
塔斯马尼亚 | “国家之电池”抽水蓄能可行性调查,提出20万美元的微网试验项目 | 已经达到100%可再生能源 |
维多利亚州 | 针对典型项目,ARENA提供2500万美元的支持,维多利亚政府提供2500万美元的支持 光伏家庭包:为年收入低于18万美元的10万个家庭,提供50%的电池安装成本补贴,每个家庭不高于4835美元 | 到2030年50% |
西澳 | 拨款600万美元建立一个未来电池工业合作研究中心 | 支持国家可再生能源目标 |
Table 3
Australia ancillary service market categories"
项目 | 辅助服务类型 | 服务说明 | 市场 |
---|---|---|---|
市场化辅助服务(FCAS市场) | 调节调频 (Regulation FCAS) | 增加MW,提升频率使其靠近50 Hz | 向上 |
降低MW,降低频率使其靠近50 Hz | 向下 | ||
应急调频 (Contingency FCAS) | 紧急事件时在6 s内提供调频服务(快速服务) | 向上 | |
向下 | |||
紧急事件时在60 s内提供调频服务(慢速服务) | 向上 | ||
向下 | |||
紧急事件时在5 min内提供调频服务(延迟服务) | 向上 | ||
向下 | |||
非市场化辅助服务(NMAS) | NSCAS | 由AEMO采购,用于控制网络不同节点的电压,并将电流控制在标准范围内 | 无功 |
切负荷 | |||
SRAS | 发电机组重启,使输电系统在重大机组脱网后恢复供电 | 黑启动 |
Table 4
The cost recovery of Australia ancillary services"
项目 | 辅助服务类型 | 支付方式 | 支付对象 | 成本疏导方式 | 成本分摊主体 |
---|---|---|---|---|---|
市场化辅助服务(FCAS市场) | 调节调频 (regulation FCAS) | 基于市场出清价格和每个调度间隔提供的服务量进行支付 | 接受调度的(scheduled)相关市场发电商/市场用户 | “肇事者”承担,如有剩余,剩余部分由所有市场用户按照用电量分摊 | 向上服务成本由市场发电商和市场小型发电聚合商分摊; 向下服务成本由市场用户分摊 |
应急调频 (contingency FCAS) | 基于市场出清价格和每个调度间隔提供的服务量进行支付 | 接受调度的(scheduled)相关市场发电商/市场小型发电聚合商/市场用户 | 按相关市场参与者用电/发电的比例进行分摊 | 有独立MPFs1)的市场参与方或者没有独立MPFs的市场用户承担 | |
非市场化辅助 服务(NMAS) | NSCAS | 基于AEMO和注册市场参与方之间的合同协议条款进行支付 | 签订合同的相关市场注册参与方 | 按照受益区域内相关市场参与方的用电量按比例进行分摊 | 仅市场用户承担 |
SRAS | 基于AEMO和注册市场参与方之间的合同协议条款进行支付 | 签订合同的相关市场注册参与方 | 按照受益区域内相关市场参与方的用电量按比例进行分摊 | 市场用户和市场发电商按照50/50进行分摊 |
1 | AUSTRALIA GOVERNMENT. Australia's long-term emissions reduction plan[EB/OL]. [2021.11.01]. https://www.industry.gov.au/data-and-publications/australias-long-term-emissions-reduction-plan. |
2 | AUSTRALIA GOVERNMENT. Clean energy regulator. renewable energy target[EB/OL]. [2021.11.01]. http://www.cleanenergyregulator.gov.au/RET. |
3 | AEMC. Draft rule determination national electricity amendment (access, pricing and incentive arrangements for distributed energy resources) rule 2021[EB/OL]. [2021.11.01]. https://www.aemc.gov.au/sites/default/files/2021-03/Draft%20Determination%20-%20ERC0311%20and%20RRC0039%20-%20Access%20Pricing%20and%20Incentive%20arrangements%20for%20DER.pdf. |
4 | AEMO.2020 integrated system plan[EB/OL]. [2021.11.01]. https://aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp/2020-integrated-system-plan-isp. |
5 | AEMO. Quarterly energy dynamics Q4 2020[EB/OL]. [2021.11.01]. https://aemo.com.au/-/media/files/major-publications/qed/2020/qed-q4-2020.pdf?la=en. |
6 | 武利会, 岳芬, 宋安琪, 等. 分布式储能的商业模式对比分析[J]. 储能科学与技术, 2019, 8(5): 960-966. |
WU L H, YUE F, SONG A Q, et al. Business models for distributed energy storage[J]. Energy Storage Science and Technology, 2019, 8(5): 960-966. | |
7 | AEMO.Settlements guide to ancillary services payment and recoverye[B/OL]. [2021.11.01]. https://aemo.com.au/-/media/files/electricity/nem/data/ancillary_services/2020/settlements-guide-to-ancillary-services-payment-and-recovery.pdf?la=en. |
8 | AER.State of the energy market 2021[EB/OL]. [2021.11.01]. https://www.aer.gov.au/publications/state-of-the-energy-market-reports/state-of-the-energy-market-2021. |
9 | AEMO. What is 5 minute settlement? [EB/OL]. [2021.11.01]. https://cn.bing.com/search?q=What%20is%205-Minute%20Settlement%20(5MS)%3F&qs=n&form=QBRE&sp=-1&pq=what%20is%205-minute%20settlement%20(5ms)%3F&sc=0-34&sk=&cvid=E9B79F31F55B4175AD0F3A35A3C0483A. |
10 | 冷媛, 辜炜德. 澳大利亚电力金融市场运营机制及对中国电力市场建设的启示[J]. 中国电力, 2021, 54(6): 36-43, 61. |
LENG Y, GU W D. Operating mechanism of Australian electric financial derivatives market and its implications for electricity market construction in China[J]. Electric Power, 2021, 54(6): 36-43, 61. | |
11 | AEMC. Raft rule determination national electricity amendment (integrating energy storage systems into the nem) rule[EB/OL]. [2021.11.01]. https://www.aemc.gov.au/sites/default/files/2021-07/integrating_energy_storage_systems_into_the_nem_-_erc0280_-_draft_determination.pdf. |
12 | AEMC. Fact sheet-Marginal loss factors[EB/OL]. [2021.11.01]. https://www.aemc.gov.au/sites/default/files/2019-03/Fact%20sheet%20marginal%20loss%20factors.pdf. |
13 | AEMC. Information sheet - Integrating energy storage systems into the NEM [EB/OL]. 2021.11.01]. https://www.aemc.gov.au/sites/default/files/documents/integrating_energy_storage_systems_into_the_nem_-_erc0280_-_information_sheet_-_draft_determination.pdf. |
14 | AEMC. Final report aemo request for protected event declaration[EB/OL]. [2021.11.01]. https://www.aemc.gov.au/sites/default/files/2019-06/Final%20determination%20-%20AEMO%20request%20for%20declaration%20of%20protected%20event.pdf. |
15 | Aurecon. Hornsdale power reserve year 1 technical and market impact case study [EB/OL]. [2021.11.01]. https://hornsdalepowerreserve.com.au/wp-content/uploads/2020/07/Aurecon-Hornsdale-Power-Reserve-Impact-Study-year-1.pdf. |
16 | AER. Decision south australian energy transformation determination on dispute-application of the regulatory investment test for transmission[EB/OL]. [2021.11.01]. https://www.aer.gov.au/system/files/DORIS%20-%20D19-78878%20AER%20-%20Decision%20-%20Determination%20on%20RIT-T%20dispute%20-%20ElectraNet%20-South%20Australian%20Energy%20Transformation%20-%205%20June%202019_0.pdf. |
17 | AEMO. Interconnector capabilities for the national electricity market[EB/OL]. [2021.11.01]. https://www.aemo.com.au/-/media/Files/Electricity/NEM/Security_and_Reliability/Congestion-Information/2017/Interconnector-Capabilities.pdf. |
18 | VICTORIA STATE GOVERNMENT. The victorian big battery Q&A[EB/OL]. [2021.11.01]. https://www.energy.vic.gov.au/renewable-energy/the-victorian-big-battery/the-victorian-big-battery-q-and-a. |
19 | PWC. SIPS 2020 validation business case for a victorian SIPS service[EB/OL]. [2021.11.01]. https://cn.bing.com/search?q=SIPS%202020%20Validation%20Business%20Case%20for%20a%20Victorian%20SIPS%20Service&qs=n&form=QBRE&sp=-1&pq=sips%202020%20validation%20business%20case%20for%20a%20victorian%20sips%20service&sc=0-63&sk=&cvid=0981879A0CD34C268D93EDD4C0BC42EC. |
[1] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[2] | Jie SONG, Linxiao GENG, Yongfu SANG, Rongbin WEN, Peng SUN, Linjuan GONG. Study on primary frequency modulation capacity planning of thermal power unit assisted by hybrid energy storage based on EMD decomposition [J]. Energy Storage Science and Technology, 2023, 12(2): 496-503. |
[3] | Jun SHENG, Yimin FU, Huigen YU. Structure simulation of large soft pack module for energy storage [J]. Energy Storage Science and Technology, 2023, 12(2): 579-584. |
[4] | Shuili YANG, Xiaokang LAI, Tao DING, Zekai WANG, Jizhong CHEN, Jiahui ZHU, Tingting LI. Application and prospect of new energy storage technologies in resilient power systems [J]. Energy Storage Science and Technology, 2023, 12(2): 515-528. |
[5] | Shigang LUO, Wei ZHANG, Weiwu LI, Yongli BAI. A day-ahead optimized operation of integrated energy system and prosumers with flexible economic regulation of electric/thermal storage [J]. Energy Storage Science and Technology, 2023, 12(2): 486-495. |
[6] | Haidong CHEN, Fei MENG, Qing WANG, Feng HOU, Yi WANG, Zhihua ZHANG. Influence of installed capacity of energy storage system and renewable energy power generation on power system performance [J]. Energy Storage Science and Technology, 2023, 12(2): 477-485. |
[7] | Chao ZHANG, Zuoxia XING, Qitong FU, Libing JIANG, Lei CHEN. Design of thermal and energy storage performance test platform for solid electrothermal energy storage device [J]. Energy Storage Science and Technology, 2023, 12(2): 585-592. |
[8] | Yucheng DAI, Zengpeng WANG, Kaibao LIU, Jiateng ZHAO, Changhui LIU. Research progress of heat storage and heat transfer enhancement based on phase change materials [J]. Energy Storage Science and Technology, 2023, 12(2): 431-458. |
[9] | Meiqian HOU, Qifan NIU, Jie XING, Yinghao SHAN. Optimal configuration of energy storage system in active distribution network with the consideration of reliability [J]. Energy Storage Science and Technology, 2023, 12(2): 504-514. |
[10] | Yang LIU, Weijun TENG, Qingfa GU, Xin SUN, Yuliang TAN, Zhijin FANG, Jianlin LI. Scaled-up diversified electrochemical energy storage LCOE and its economic analysis [J]. Energy Storage Science and Technology, 2023, 12(1): 312-318. |
[11] | Zhihao ZHANG, Xiaogang JIN, Hengxing BAO, Xiang LING. Experimental study of Ca(OH)2/CaO thermochemical energy storage in a mixed heating reactor [J]. Energy Storage Science and Technology, 2023, 12(1): 227-235. |
[12] | Tingting CUI, Yan WANG. Energy storage characteristics of porous inorganic composite phase-change materials based on the Lattice Boltzmann Method [J]. Energy Storage Science and Technology, 2023, 12(1): 61-68. |
[13] | Qianjun MAO, Yuanyuan ZHU. Study on heat storage performance of novel bifurcated fins to strengthen shell-and-tube energy storage tanks [J]. Energy Storage Science and Technology, 2023, 12(1): 69-78. |
[14] | Limu XIAO, Xin GAO, Shihai ZHANG, Xiankui WEN. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. |
[15] | Juntao CHEN, Yajun WANG, Shunyi SONG, Wenhao QU, Yibing LIU. Simulation of the primary frequency modulation process of wind power with an auxiliary flywheel energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 172-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||