Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (8): 2585-2599.doi: 10.19799/j.cnki.2095-4239.2022.0184
Previous Articles Next Articles
Rongyang WEI1(), Tian MAO2, Han GAO1, Jianren PENG1, Jian YANG1,2()
Received:
2022-04-01
Revised:
2022-04-07
Online:
2022-08-05
Published:
2022-08-03
Contact:
Jian YANG
E-mail:22027047@zju.edu.cn;zdhjkz@zju.edu.cn
CLC Number:
Rongyang WEI, Tian MAO, Han GAO, Jianren PENG, Jian YANG. Health state estimation of lithium ion battery based on TWP-SVR[J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599.
Table 2
Correlation coefficient between indirect health characteristics and attenuation capacity"
电池 | 相关系数 | 间接健康特征 | |||
---|---|---|---|---|---|
F1 | F2 | F3 | F4 | ||
5 | Pearson | 0.9949 | 0.9978 | 0.9926 | 0.9949 |
Spearman | 0.9725 | 0.9926 | 0.9701 | 0.9826 | |
Kendall | 0.9013 | 0.9520 | 0.8959 | 0.9359 | |
6 | Pearson | 0.9933 | 0.9988 | 0.9948 | 0.9942 |
Spearman | 0.9989 | 0.9990 | 0.9985 | 0.9993 | |
Kendall | 0.9805 | 0.9825 | 0.9773 | 0.9859 | |
7 | Pearson | 0.9891 | 0.9969 | 0.9874 | 0.9872 |
Spearman | 0.9642 | 0.9897 | 0.9637 | 0.9767 | |
Kendall | 0.8811 | 0.9397 | 0.8786 | 0.9179 | |
18 | Pearson | 0.9895 | 0.9972 | 9.8550 | 0.9908 |
Spearman | 0.9951 | 0.9952 | 0.9938 | 0.9971 | |
Kendall | 0.9537 | 0.9576 | 0.9490 | 0.9686 |
Table 5
Data acquisition details of energy storage power station"
参数 | 采样周期/ms | 误差/% | 计算周期/s | 更新周期/s | 备注 |
---|---|---|---|---|---|
电流 | 25 | ±0.2 | 1 | 60 | 1秒钟计算一次平均电流,60秒后上传60个电流数据至服务器 |
电压 | 50 | ±0.3 | 1 | 60 | 1秒钟计算一次平均电压,60秒后上传60个电压数据至服务器 |
电荷量 | 25 | 2 | 1 | 60 | 根据电流采样值,使用安时积分法,1秒钟计算一次电荷量,60秒后计上传60个电荷量数据至服务器 |
SOC | 25 | 2 | 1 | 60 | 根据电荷量计算荷电状态(SOC),每次放电初始值为100% |
SOH | 25 | 2 | 1 | 60 | 根据电荷量计算SOH,电池组装机第一次放电时为100% |
1 | 杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64. |
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64. | |
2 | 苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展[J]. 储能科学与技术, 2019, 8(2): 225-236. |
SU W, ZHONG G B, SHEN J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 225-236. | |
3 | 卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669. |
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669. | |
4 | 徐超, 李立伟, 杨玉新, 等. 基于改进粒子滤波的锂电池SOH预测[J]. 储能科学与技术, 2020, 9(6): 1954-1960. |
XU C, LI L W, YANG Y X, et al. Lithium-ion battery SOH estimation based on improved particle filter[J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960. | |
5 | ZHENG L F, ZHANG L, ZHU J G, et al. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model[J]. Applied Energy, 2016, 180: 424-434. |
6 | HU X S, FENG F, LIU K L, et al. State estimation for advanced battery management: Key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334. |
7 | WENG C H, CUI Y J, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235: 36-44. |
8 | BERECIBAR M, GARMENDIA M, GANDIAGA I, et al. State of health estimation algorithm of LiFePO4 battery packs based on differential voltage curves for battery management system application[J]. Energy, 2016, 103: 784-796. |
9 | MERLA Y, WU B, YUFIT V, et al. Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries[J]. Journal of Power Sources, 2016, 307: 308-319. |
10 | HAIDER S N, ZHAO Q C, LI X L. Cluster-based prediction for batteries in data centers[J]. Energies, 2020, 13(5): 1085. |
11 | ZHANG Q C, LI X Z, DU Z C, et al. Aging performance characterization and state-of-health assessment of retired lithium-ion battery modules[J]. Journal of Energy Storage, 2021, 40: doi.org/10.1016/j.est.2021.102743. |
12 | ZHOU K Q, QIN Y, LAU B P L, et al. Lithium-ion battery state of health estimation based on cycle synchronization using dynamic time warping[C]//IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society. October 13-16, 2021, Toronto, ON, Canada. IEEE, 2021: 1-6. |
13 | 李海林, 梁叶, 王少春. 时间序列数据挖掘中的动态时间弯曲研究综述[J]. 控制与决策, 2018, 33(8): 1345-1353. |
LI H L, LIANG Y, WANG S C. Review on dynamic time warping in time series data mining[J]. Control and Decision, 2018, 33(8): 1345-1353. | |
14 | FOLGADO D, BARANDAS M, MATIAS R, et al. Time alignment measurement for time series[J]. Pattern Recognition, 2018, 81: 268-279. |
15 | SIOROS G, NYMOEN K. Accurate shape and phase averaging of time series through Dynamic Time Warping[EB/OL]. https://arxiv.org/abs/2109.00978. |
16 | CHEN Z, SONG X, XIAO R, et al. State of health estimation for lithium-ion battery based on long short term memory networks[J]. DEStech Transactions on Environment Energy, 2019: doi: 10.12783/dteees/iceee2018/27855. |
17 | 张少凤, 张清勇, 杨叶森, 等. 基于滑动窗口和LSTM神经网络的锂离子电池建模方法[J]. 储能科学与技术, 2022, 11(1): 228-239. |
ZHANG S F, ZHANG Q Y, YANG Y S, et al. Lithium-ion battery model based on sliding window and long short term memory neural network[J]. Energy Storage Science and Technology, 2022, 11(1): 228-239. | |
18 | UNGUREAN L, MICEA M V, CÂRSTOIU G. Online state of health prediction method for lithium-ion batteries, based on gated recurrent unit neural networks[J]. International Journal of Energy Research, 2020, 44(8): doi:10.1002/er.5413. |
19 | QU J T, LIU F, MA Y X, et al. A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178-87191. |
20 | 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333. |
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. | |
21 | FAN Y X, XIAO F, LI C R, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101741. |
22 | 戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649. |
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. | |
23 | FENG H L, SHI G L. SOH and RUL prediction of Li-ion batteries based on improved Gaussian process regression[J]. Journal of Power Electronics, 2021, 21(12): 1845-1854. |
24 | 韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438. |
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. | |
25 | LI R, LI W R, ZHANG H N, et al. On-line estimation method of lithium-ion battery health status based on PSO-SVM[J]. Frontiers in Energy Research, 2021, 9: doi: 10.3389/fenrg.2021.693249. |
26 | B S, K G. Prognostics center of excellence-data repository[EB/OL]. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#battery, 2007/2022-01-29. |
27 | JUAREZ-ROBLES D, JEEVARAJAN J A, MUKHERJEE P P. Degradation-safety analytics in lithium-ion cells: Part I. aging under charge/discharge cycling[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abc8c0. |
[1] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[4] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[5] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[6] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[7] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[8] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[9] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[10] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[11] | Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model [J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. |
[12] | Jinhui GAO, Yunzhu CHEN, Yang YANG, Fanhui MENG, Hong XU, Li WANG, Jiang ZHOU, Xiangming HE. Research progress of reference electrode for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 987-994. |
[13] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
[14] | Rongyan WEN, Zhihao GAO, Shulin MEN, Zuoqiang DAI, Jianmin ZHANG. Research progress of polyvinylidene fluoride based gel polymer electrolyte [J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. |
[15] | Youman ZHAO, Xiaobo YAN, Hongkun DUAN, Zewei CHEN. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB [J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||