Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (8): 2574-2584.doi: 10.19799/j.cnki.2095-4239.2022.0127
Previous Articles Next Articles
Received:
2022-03-08
Revised:
2022-03-21
Online:
2022-08-05
Published:
2022-08-03
Contact:
Yong XIAO
E-mail:xxxiaoyong@163.com
CLC Number:
Yong XIAO, Jun XU. Risk assessment of battery safe operation in energy storage power station based on combination weighting and TOPSIS[J]. Energy Storage Science and Technology, 2022, 11(8): 2574-2584.
Table 1
Battery safety risk, safety status description and main sources"
电池安全风险 | 安全状态描述 | 主要来源 |
---|---|---|
壳体破损、变形、漏液C1 | 电池模组外观完好无破损、膨胀,不存在变形、漏液等现象 | 图书[ |
红光发热C2 | 熄灯巡视检查电池无发红现象,红外测温正常 | 图书[ |
散发异味C3 | 室内无异味 | 图书[ |
异常振动和噪声C4 | 无异常振动和声响 | 图书[ |
清洁度不够C5 | 不存在锈蚀、污迹现象,标识应清晰 | 图书[ |
有其他遗留物C6 | 无临时短路接线及其他杂物 | 图书[ |
电站系统容量C7 | 电池容量配置根据实际需求进行优化 | 规范[ |
电站使用年限C8 | 正常工况下使用寿命在10年左右,关注设备老化,在运行考核周期内更换旧电池 | 标准[ |
电池可用容量低C9 | 循环次数可达5000次且容量保持率不低于80% | 标准[ |
电池过充电C10 | 优化充电策略,电池无过充现象 | 图书[ |
电池过放电C11 | 放电深度不宜过大 | 图书[ |
电池单体间电压不一致C12 | 电压一致性符合规定 | 图书[ |
外部短路C13 | 外部接线和设备无短路现象;有能迅速切断短路电流的保护方案 | 文献[ |
外界火源C14 | 有防止外界火源温度、气体等影响的防范措施;电缆沟等连通区域两端应分隔、封堵 | 文献[ |
物理冲击C15 | 有防震动或防止人为破坏的措施 | 规程[ |
电池支架不平稳C16 | 电池架应为架式结构,每面尺寸高度应统一 | 图书[ |
元器件接线不可靠C17 | 电气一、二次元器件走线整齐、接线正确、牢固可靠、绝缘符合标准 | 图书[ |
潮湿C18 | 强化绝缘检测,无潮湿造成的腐蚀性的绝缘部件损坏 | 文献[ |
粉尘C19 | 有防止大量灰尘进入电池包和模块壳体造成击穿的措施 | 文献[ |
温度影响C20 | 根据室内室外气温进行电池舱温度的调节 | 图书[ |
通风不良C21 | 防止易燃易爆气体聚集的通风口布置合理、通风管道无阻塞现象、排气扇灵活转动 | 规程[ |
电池管理系统C22 | 测量值显示正常、无告警、通信正常 | 图书[ |
安全联动系统C23 | 开关、断路器等接触可靠,断开点明显;其他设施保护系统运行正常 | 图书[ |
防雷及接地保护系统C24 | 避雷针、避雷器、接地网相关要求符合标准 | 图书[ |
消防系统C25 | 火灾自动报警系统、灭火系统、供水设施、消防器材等符合规定 | 图书[ |
气体监测系统C26 | 电池内部短路释放大量爆炸性气体超过阙值能正确响应 | 文献[ |
误操作C27 | 有防误操作的措施,避免安装错误导致的误操作,对疑点多询问 | 文献[ |
员工技术水平C28 | 上岗培训、有相关证书并每半年至少开展一次火灾应急演练 | 文献[ |
生理状态C29 | 定期健康检查、无影响工作的生理缺陷 | 文献[ |
心理状态C30 | 员工富有责任心、无消极怠工、平时经常沟通、遇紧急情况不慌乱 | 文献[ |
Table 5
Types and standards of indicators"
指标 | 类型 | 储能电站电池安全运行标准 | ||||
---|---|---|---|---|---|---|
Ⅰ级 | Ⅱ级 | Ⅲ级 | Ⅳ级 | Ⅴ级 | ||
壳体破损、变形、漏液C1(数量/处) | 成本型 | 0 | 1 | 2 | 3 | >3 |
红光发热C2(数量/处) | 成本型 | 0 | 1 | 2 | 3 | >3 |
散发异味C3 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
异常振动和噪声C4 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
清洁度不够C5 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
有其他遗留物C6(数量/处) | 成本型 | 0 | 1 | 2 | 3 | >3 |
电站系统容量C7/MWh | 成本型 | ≤0.5 | ≤10 | ≤50 | ≤100 | >100 |
电站使用年限C8/月 | 成本型 | ≤12 | ≤48 | ≤84 | ≤120 | >120 |
电池可用容量C9(年下降率/%) | 成本型 | ≤1 | ≤2 | ≤3 | ≤4 | >4 |
电池过充电C10 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
电池过放电C11(放电深度/%) | 成本型 | ≤80 | ≤85 | ≤90 | ≤95 | >95 |
电池单体间电压不一致C12/mV | 成本型 | ≤100 | ≤200 | ≤300 | ≤400 | >400 |
外部短路C13 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
外界火源C14(距离/m) | 效益型 | ≥0.9 | ≥0.7 | ≥0.5 | ≥0.3 | <0.3 |
物理冲击C15 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
电池支架不平稳C16(数量/处) | 成本型 | 0 | 1 | 2 | 3 | >3 |
元器件接线不可靠C17(数量/处) | 成本型 | 0 | 1 | 2 | 3 | >3 |
潮湿C18/% | 成本型 | ≤80 | ≤85 | ≤90 | ≤95 | >95 |
粉尘C19 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
温度影响C20 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
通风不良C21 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
电池管理系统C22 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
安全联动系统C23 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
防雷及接地保护系统C24 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
消防系统C25 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
气体监测系统C26 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
误操作C27 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
员工技术水平C28 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
生理状态C29 | 效益型 | [85,100] | [70,85) | [55,70) | [40,55) | [0,40) |
心理状态C30 | 效益型 | [85, 100] | [70,85) | [55,70) | [40,55) | [0,40) |
Table 6
Initial scoring, subjective weight, objective weight and combined weight"
指标 | 打分情况 | 主观权重 | 客观权重 | 组合权重 | |||
---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | ||||
C1 | 1 | 2 | 5 | 1 | 0.1181 | 0.0663 | 0.1106 |
C2 | 1 | 3 | 1 | 2 | 0.0631 | 0.0742 | 0.0855 |
C3 | 96 | 81 | 62 | 77 | 0.0505 | 0.0026 | 0.0145 |
C4 | 87 | 70 | 50 | 78 | 0.0313 | 0.0043 | 0.0145 |
C5 | 60 | 82 | 42 | 80 | 0.0164 | 0.0072 | 0.0136 |
C6 | 0 | 0 | 2 | 0 | 0.0286 | 0.0644 | 0.0536 |
C7 | 3 | 2.4 | 8.8 | 2.1 | 0.0092 | 0.0648 | 0.0305 |
C8 | 50 | 52 | 46 | 35 | 0.0168 | 0.1298 | 0.0583 |
C9 | 2.2 | 2.3 | 2.7 | 2.5 | 0.0259 | 0.0784 | 0.0563 |
C10 | 91 | 84 | 60 | 75 | 0.0648 | 0.0026 | 0.0161 |
C11 | 95 | 92 | 94 | 97 | 0.0648 | 0.0799 | 0.0899 |
C12 | 100 | 100 | 120 | 150 | 0.0394 | 0.0701 | 0.0657 |
C13 | 88 | 72 | 51 | 66 | 0.0396 | 0.0041 | 0.0160 |
C14 | 0.4 | 0.3 | 0.3 | 0.7 | 0.0396 | 0.0153 | 0.0307 |
C15 | 88 | 72 | 54 | 62 | 0.0166 | 0.0037 | 0.0098 |
C16 | 1 | 1 | 4 | 3 | 0.0114 | 0.0856 | 0.0390 |
C17 | 1 | 1 | 3 | 0 | 0.0577 | 0.0688 | 0.0787 |
C18 | 74 | 72 | 70 | 63 | 0.0176 | 0.1147 | 0.0562 |
C19 | 92 | 76 | 55 | 63 | 0.0118 | 0.0043 | 0.0088 |
C20 | 81 | 77 | 65 | 44 | 0.0402 | 0.0055 | 0.0187 |
C21 | 89 | 72 | 57 | 67 | 0.0090 | 0.0029 | 0.0064 |
C22 | 97 | 80 | 58 | 74 | 0.0468 | 0.0037 | 0.0164 |
C23 | 92 | 77 | 51 | 68 | 0.0468 | 0.0049 | 0.0188 |
C24 | 82 | 43 | 53 | 78 | 0.0254 | 0.0076 | 0.0173 |
C25 | 76 | 72 | 48 | 38 | 0.0254 | 0.0086 | 0.0184 |
C26 | 80 | 95 | 57 | 74 | 0.0100 | 0.0036 | 0.0075 |
C27 | 63 | 86 | 48 | 68 | 0.0070 | 0.0047 | 0.0072 |
C28 | 72 | 91 | 53 | 82 | 0.0322 | 0.0042 | 0.0145 |
C29 | 77 | 84 | 43 | 65 | 0.0134 | 0.0064 | 0.0116 |
C30 | 66 | 40 | 53 | 79 | 0.0204 | 0.0068 | 0.0147 |
Table 7
Relative weight of each layer index"
上层指标 | 下层指标 | 算术平均法求出的权重 | 几何平均法求出的权重 | 特征值法求出的权重 | 平均值 | CI | CR |
---|---|---|---|---|---|---|---|
O | B1 | 0.3056 | 0.3119 | 0.3064 | 0.3080 | 0.0561 | 0.0445<0.10 |
B2 | 0.2198 | 0.2206 | 0.2224 | 0.2209 | |||
B3 | 0.1650 | 0.1636 | 0.1664 | 0.1650 | |||
B4 | 0.0805 | 0.0765 | 0.0786 | 0.0785 | |||
B5 | 0.1548 | 0.1560 | 0.1530 | 0.1546 | |||
B6 | 0.0743 | 0.0715 | 0.0733 | 0.0730 | |||
B1 | C1 | 0.3793 | 0.3876 | 0.3835 | 0.3835 | 0.0675 | 0.0536<0.10 |
C2 | 0.2029 | 0.2055 | 0.2065 | 0.2050 | |||
C3 | 0.1649 | 0.1631 | 0.1642 | 0.1641 | |||
C4 | 0.1044 | 0.0988 | 0.1013 | 0.1015 | |||
C5 | 0.0534 | 0.0534 | 0.0527 | 0.0532 | |||
C6 | 0.0950 | 0.0915 | 0.0918 | 0.0928 | |||
B2 | C7 | 0.0429 | 0.0407 | 0.0419 | 0.0418 | 0.0323 | 0.0256<0.10 |
C8 | 0.0774 | 0.0745 | 0.0757 | 0.0759 | |||
C9 | 0.1182 | 0.1160 | 0.1170 | 0.1171 | |||
C10 | 0.2920 | 0.2949 | 0.2934 | 0.2934 | |||
C11 | 0.2920 | 0.2949 | 0.2934 | 0.2934 | |||
C12 | 0.1775 | 0.1790 | 0.1787 | 0.1784 | |||
B3 | C13 | 0.2391 | 0.2423 | 0.2391 | 0.2402 | 0.0377 | 0.0336<0.10 |
C14 | 0.2391 | 0.2423 | 0.2391 | 0.2402 | |||
C15 | 0.1017 | 0.1006 | 0.1000 | 0.1008 | |||
C16 | 0.0706 | 0.0680 | 0.0692 | 0.0693 | |||
C17 | 0.3495 | 0.3468 | 0.3527 | 0.3497 | |||
B4 | C18 | 0.2226 | 0.2253 | 0.2229 | 0.2236 | 0.0441 | 0.0495<0.10 |
C19 | 0.1534 | 0.1483 | 0.1494 | 0.1504 | |||
C20 | 0.5075 | 0.5137 | 0.5136 | 0.5116 | |||
C21 | 0.1164 | 0.1127 | 0.1141 | 0.1144 | |||
B5 | C22 | 0.3027 | 0.3033 | 0.3031 | 0.3030 | 0.0066 | 0.0059<0.10 |
C23 | 0.3027 | 0.3033 | 0.3031 | 0.3030 | |||
C24 | 0.1647 | 0.1645 | 0.1645 | 0.1646 | |||
C25 | 0.1647 | 0.1645 | 0.1645 | 0.1646 | |||
C26 | 0.0652 | 0.0645 | 0.0649 | 0.0649 | |||
B6 | C27 | 0.0984 | 0.0942 | 0.0959 | 0.0962 | 0.0477 | 0.0536<0.10 |
C28 | 0.4392 | 0.4424 | 0.4430 | 0.4415 | |||
C29 | 0.1855 | 0.1806 | 0.1828 | 0.1830 | |||
C30 | 0.2769 | 0.2827 | 0.2783 | 0.2793 |
1 | 郭海筱. 储能电站消防安全相关措施探讨[J]. 中国科技纵横, 2021(13): 101-102. |
GUO H X.Discussion on fire safety measures of energy storage power station[J].Chinese Technology In Length and Breadth, 2021(13): 101-102. | |
2 | 汝会通, 王广玲. 锂离子电池储能电站的早期预警与风险分析[J]. 电子技术, 2021, 50(9): 208-209. |
RU H T, WANG G L. Study on early warning and risk of lithium ion battery energy storage power station[J]. Electronic Technology, 2021, 50(9): 208-209. | |
3 | 黄沛丰, 刘家亮, 金翼, 等. 基于火三角模型的锂离子电池火灾事故树分析[J]. 安全与环境学报, 2018, 18(1): 66-69. |
HUANG P F, LIU J L, JIN Y, et al. Fault tree analysis method for lithium ion battery failure mode based on the fire triangle model[J]. Journal of Safety and Environment, 2018, 18(1): 66-69. | |
4 | 康荣学, 左哲. 双碳目标下电化学储能电站安全可持续发展战略研究[J]. 工业安全与环保, 2021, 47(S1): 35-38. |
KANG R X, ZUO Z. Study on safety and sustainable development strategy of electrochemical energy storage power station under dual carbon target[J]. Industrial Safety and Environmental Protection, 2021, 47(S1): 35-38. | |
5 | 陈爱萍. 储能电池舱防控灭一体化消防系统研究[J]. 消防界(电子版), 2021, 7(11): 127-128. |
6 | FIORAVANTI R, KUMAR K, NAKATA S, et al. Predictive-maintenance practices: For operational safety of battery energy storage systems[J]. IEEE Power and Energy Magazine, 2020, 18(6): 86-97. |
7 | HILL,DAVION.Battery safety for power engineers: considerations for safer energy storage installations[J].Power Engineering, 2016, 120(6): 24-29. |
8 | 许萍. 基于TOPSIS的电力建设企业多项目安全控制研究[J]. 价值工程, 2017, 36(30): 46-48. |
XU P. Research on multi-project security control of power construction enterprise based on TOPSIS[J]. Value Engineering, 2017, 36(30): 46-48. | |
9 | 王立茹, 任锁, 屈曦颂, 等.电动汽车充电站风险评估[J].工业计量,2020,30(3):74-77. |
10 | JOZI S A, SAFFARIAN S, SHAFIEE M, et al. Safety, health, and environmental risk assessment of a gas power plant: A case study from southern Iran[J]. Human and Ecological Risk Assessment: an International Journal, 2015, 21(6): 1479-1495. |
11 | 国网湖南省电力有限公司电力科学研究院, 湖南省湘电试验研究院有限公司. 电池储能电站运维检测实用技术[M]. 北京: 中国电力出版社, 2020. |
12 | 曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547. |
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547. | |
13 | 北京市应急管理局. 丰台区“4·16”较大火灾事故调查报告[EB/OL].[2021-11-22]. http://yjglj.beijing.gov.cn/art/2021/11/22/art_7466_470.html. |
14 | 国家市场监督管理总局, 国家标准化管理委员会. 储能电站运行维护规程: GB/T 40090—2021[S]. 北京: 中国标准出版社, 2021. |
15 | 安徽省应急管理厅. 关于印发《全省电化学储能电站安全风险隐患专项整治工作方案》的通知[EB/OL]. [2021-12-20].http://yjt.ah.gov.cn/public/9377745/146286601.html. |
16 | 中华人民共和国住房和城乡建设部. GB 51048—2014, 电化学储能电站设计规范[S]. 北京: 中国计划出版社, 2015. |
17 | 北京市市场监督管理局. 电力储能系统建设运行规范: DB11/T 1893—2021[S].北京: 中国标准出版社, 2021. |
18 | 国家市场监督管理总局, 国家标准化管理委员会.电化学储能电站运行指标及评价: GB/T 36549—2018[S]. 北京: 中国标准出版社, 2018. |
19 | 国家能源局. 电池储能电站的安全性问题[EB/OL]. [2012-09-12]. http://www.nea.gov.cn/2012-09/12/c_131845865.html. |
20 | 东方财富网. 南都电源:正常情况下储能电站使用寿命为十年[EB/OL]. https://stock.eastmoney.com/a2/20180205829984152.html. |
21 | 高飞, 杨凯, 惠东, 等. 储能用磷酸铁锂电池循环寿命的能量分析[J]. 中国电机工程学报, 2013, 33(5): 41-45, 8. |
GAO F, YANG K, HUI D, et al. Cycle-life energy analysis of LiFePO4 batteries for energy storage[J]. Proceedings of the CSEE, 2013, 33(5): 41-45, 8. | |
22 | 工业和信息化部. 锂离子电池行业规范条件(2021年本)[EB/OL]. [2021-12-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/gg/art/2021/art_8c1b0573f1234c138faa03d0c38c8eda.html. |
23 | 国家市场监督管理总局, 国家标准化管理委员会. 电力储能用锂离子电池: GB/T 36276—2018[S]. 北京: 中国标准出版社, 2019. |
24 | 全国能源信息平台. 全球主要储能事故汇总分析[EB/OL]. [2021-08-05] .https://baijiahao.baidu.com/s?id=1707261924438450608&wfr=spider&for=pc. |
25 | 李先栋, 王飞, 曹永吉, 等. 基于层次分析法的梯次利用电池储能系统运行性能量化评估[J]. 山东大学学报(工学版), 2019, 49(4): 123-129. |
LI X D, WANG F, CAO Y J, et al. Analytic hierarchy process based quantitative performance evaluation of second-use battery energy storage system[J]. Journal of Shandong University (Engineering Science), 2019, 49(4): 123-129. | |
26 | 赵振宇, 周仁和. 电动汽车电化学储能技术综合评价研究[J]. 电源技术, 2021, 45(12): 1581-1583, 1607. |
ZHAO Z Y, ZHOU R H. Comprehensive evaluation of electrochemical energy storage technology for electric vehicles based on improved AHP-CRITIC-TOPSIS[J]. Chinese Journal of Power Sources, 2021, 45(12): 1581-1583, 1607. | |
27 | 丁志康, 王维俊, 米红菊, 等. 基于层次分析-熵权法的最优储能方案评估[J]. 电子设计工程, 2020(21): 1-4. |
DING Z K, WANG W J, MI H J, et al. Evaluation of optimal energy storage scheme based on AHP and EWM[J]. Electronic Design Engineering, 2020(21): 1-4. | |
28 | 余彪, 方佳良, 许家玉, 等. 典型综合能源服务项目优选研究[J]. 能源与环境, 2019(6): 34-36, 38. |
29 | 史广义, 彭伟, 白蝶. 安全风险分级管控在长龙山抽水蓄能电站的应用[J]. 人民长江, 2018(S2): 211-213, 267. |
SHI G Y, PENG W, BAI D. Risk classification management of Changlongshan pumping power station[J]. Yangtze River, 2018(S2): 211-213, 267. | |
30 | 杨太华, 秦静, 李志翔. 基于故障树和改进灰色关联法的新能源汽车加氢站安全风险评价[J]. 现代电子技术, 2021, 44(2): 115-121. |
YANG T H,QIN J,LI Z X. Safety risk assessment of new energy vehicle hydrogen refueling station based on fault tree and improved grey correlation method[J].Modern Electronics Technique, 2021, 44(2): 115-121. | |
31 | 石广斌, 赵浩杨, 杨振宏, 等. 基于WSR-TOPSIS的学生公寓火灾风险评价[J]. 安全与环境学报, 2021, 21(3): 927-934. |
SHI G B,ZHAO H Y,YANG Z H, et al. Fire risk assessment of student apartments based on WSR-TOPSIS[J]. Journal of Safety and Environment, 2021, 21(3): 927-934. |
[1] | Kangyong YIN, Fengbo TAO, Wei LIANG, Zhiyuan NIU. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station [J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. |
[2] | Shangyu ZHAO, Zhen ZHANG, Baoyuan WANG, Quhu ZENG. An engineering method for detection of problems of lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(2): 643-651. |
[3] | Zhuoheng XIE, Ziyang WANG, Gang ZHANG, Zhenning GU, Xiaolong SHI, Bin YAO. Experimental study on fire extinguishing of large-capacity ternary lithium-ion battery by perfluorohexanone and water mist fire extinguishing device [J]. Energy Storage Science and Technology, 2022, 11(2): 652-659. |
[4] | Xiaoyuan WU, Xinbao LU, Jiaxuan DONG, Ru WANG. Local policy for fuel cell vehicles [J]. Energy Storage Science and Technology, 2021, 10(6): 1987-1997. |
[5] | Ke LI, Juyi MU, Yi JIN, Jiajia XU, Pengjie LIU, Qingsong WANG, Huang LI. Fire risk of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. |
[6] | Wenxin MEI, Qiangling DUAN, Qingshan WANG, Yan LI, Xin LI, Jinda ZHU, Qingsong WANG. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures [J]. Energy Storage Science and Technology, 2021, 10(1): 202-209. |
[7] | XU Huiyong, FAN Yafei, ZHANG Zhiping, HU Renzong. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush [J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126. |
[8] | MA Tianyi, WANG Fang, XU Dapeng, LIN Chunjing, LIU Shiqiang, CHEN Liduo. Investigation of the performance and safety degradation caused by slight accumulation of electricity in traction batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 400-408. |
[9] | GAO Fei, WANG Kangkang, TIAN Baogui, CHEN Qingtao, YANG Kai, SU Zhenxi, ZHANG Mingjie, LIU Wei, FAN Maosong, LIU Hao, GENG Mengmeng, WANG Kaifeng. Combustibility and hazard of lithium iron phosphate power battery components in different aging states [J]. Energy Storage Science and Technology, 2019, 8(6): 1176-1181. |
[10] | REN Dongsheng, FENG Xuning, HAN Xuebing, LU Languang, OUYANG Minggao. Recent progress on evolution of safety performance of lithium-ion battery during aging process [J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. |
[11] | ZHANG Yu, WANG Yi, YANG Weihua, JI Hui. Selection of low-temperature phase change materials based on AHP and VIKOR method [J]. Energy Storage Science and Technology, 2015, 4(3): 300-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||