Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (8): 2564-2573.doi: 10.19799/j.cnki.2095-4239.2022.0117
Previous Articles Next Articles
Tao SUN1(), Tengteng SHEN1,2, Xin LIU2,4, Dongsheng REN2,3(), Jinhai LIU4, Yuejiu ZHENG1, Luyan WANG1,2, Languang LU2, Minggao OUYANG2
Received:
2022-03-07
Revised:
2022-03-21
Online:
2022-08-05
Published:
2022-08-03
Contact:
Dongsheng REN
E-mail:tao_sun531@usst.edu.cn;rends@tsinghua.edu.cn
CLC Number:
Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573.
Table 3
GC test results of samples with different lithium metal content"
序号 | Li质量/mg | 反应容器/mL | 测试样品 Li摩尔量/mol | 理论H2浓度/(mol/L) | GC谱图特征峰面积 | GC测试 H2浓度/(mol/L) | ||
---|---|---|---|---|---|---|---|---|
1 | 1.2 | 587 | 1.73×10-4 | 1.49×10-4 | 12560 | 12610 | 12630 | 1.64×10-4 |
2 | 3.3 | 587 | 4.76×10-4 | 4.09×10-4 | 31434 | 33021 | 33577 | 4.25×10-4 |
3 | 4.7 | 587 | 6.77×10-4 | 5.82×10-4 | 47979 | 48250 | 48009 | 6.25×10-4 |
4 | 7.0 | 587 | 1.009×10-3 | 8.67×10-4 | 68899 | 69024 | 68968 | 8.97×10-4 |
5 | 10.7 | 1124 | 1.542×10-3 | 6.89×10-4 | 52100 | 51596 | 52001 | 6.75×10-4 |
Table 4
NMR test results of different lithium metal contents"
序号 | Li质量/mg | LiCl质量/mg | Li质量比/% | LiCl质量比/% | 测试粉末质量/mg | 测试样品Li摩尔量/mol | NMR谱图特征峰面积 |
---|---|---|---|---|---|---|---|
1 | 2.3 | 500.4 | 0. 4575 | 99.5425 | 0.06343 | 4.15E-05 | 0.056606 |
2 | 5.1 | 499.0 | 1.0117 | 98.9883 | 0.06168 | 8.91E-05 | 0.126313 |
3 | 8.4 | 500.0 | 1.6522 | 98.3478 | 0.06441 | 0.000152 | 0.182615 |
4 | 9.9 | 500.7 | 1.9389 | 98.0611 | 0.06447 | 0.000179 | 0.226653 |
5 | 14.7 | 501.4 | 2.8483 | 97.1517 | 0.06537 | 0.000266 | 0.297649 |
1 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
2 | HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation. 2019, 1: doi: 10.1016/j.etran.2019.100005. |
3 | 王其钰, 王朔, 张杰男, 等. 锂离子电池失效分析概述[J]. 储能科学与技术, 2017, 6(5): 1008-1025. |
WANG Q Y, WANG S, ZHANG J N, et al. Overview of the failure analysis of lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 1008-1025. | |
4 | TOMASZEWSKA A, CHU Z Y, FENG X N, et al. Lithium-ion battery fast charging: A review[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100011. |
5 | PIAO N, GAO X N, YANG H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation, 2022, 11: doi: 10.1016/j.etran.2021.100145. |
6 | LEGRAND N, KNOSP B, DESPREZ P, et al. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling[J]. Journal of Power Sources, 2014, 245: 208-216. |
7 | SCROSATI B, GARCHE J. Lithium batteries: status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. |
8 | YANG X G, GE S H, LIU T, et al. A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells[J]. Journal of Power Sources, 2018, 395: 251-261. |
9 | REN D S, SMITH K, GUO D X, et al. Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model[J]. Journal of the Electrochemical Society, 2018, 165(10): A2167-A2178. |
10 | LI J, MURPHY E, WINNICK J, et al. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries[J]. Journal of Power Sources, 2001, 102(1/2): 302-309. |
11 | HASAN M F, CHEN C F, SHAFFER C E, et al. Analysis of the implications of rapid charging on lithium-ion battery performance[J]. Journal of the Electrochemical Society, 2015, 162(7): A1382-A1395. |
12 | REN D S, FENG X N, LU L G, et al. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Applied Energy, 2019, 250: 323-332. |
13 | VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. |
14 | OUYANG M G, CHU Z Y, LU L G, et al. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles[J]. Journal of Power Sources, 2015, 286: 309-320. |
15 | REN D S, HSU H, LI R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: doi: 10.1016/j.etran.2019.100034. |
16 | WALDMANN T, WOHLFAHRT-MEHRENS M. Effects of rest time after Li plating on safety behavior—ARC tests with commercial high-energy 18650 Li-ion cells[J]. Electrochimica Acta, 2017, 230: 454-460. |
17 | BÖRNER M, FRIESEN A, GRÜTZKE M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 382-392. |
18 | 杜光超, 郑莉莉, 张志超, 等. 锂离子电池热安全性研究进展[J]. 储能科学与技术, 2019, 8(3): 500-505. |
DU G C, ZHENG L L, ZHANG Z C, et al. Overview of research on thermal safety of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 500-505. | |
19 | 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. |
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. | |
20 | LAI X, JIN C Y, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives[J]. Energy Storage Materials, 2021, 35: 470-499. |
21 | TIAN Y, LIN C, LI H L, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries—A review on the in situ methods[J]. Applied Energy, 2021, 300: doi: 10.1016/j.apenergy.2021.117386. |
22 | JANAKIRAMAN U, GARRICK T R, FORTIER M E. Review—lithium plating detection methods in Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abd3b8. |
23 | LIU Q Q, DU C Y, SHEN B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Advances, 2016, 6(91): 88683-88700. |
24 | UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. Journal of Power Sources, 2015, 279: 428-438. |
25 | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87. |
26 | 张剑波, 苏来锁, 李新宇, 等. 基于锂离子电池老化行为的析锂检测[J]. 电化学, 2016, 22(6): 607-616. |
ZHANG J B, SU L S, LI X Y, et al. Lithium plating identification from degradation behaviors of lithium-ion cells[J]. Journal of Electrochemistry, 2016, 22(6): 607-616. | |
27 | BURNS J C, STEVENS D A, DAHN J R. In-situ detection of lithium plating using high precision coulometry[J]. Journal of the Electrochemical Society, 2015, 162(6): A959-A964. |
28 | VON LÜDERS C, ZINTH V, ERHARD S V, et al. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction[J]. Journal of Power Sources, 2017, 342: 17-23. |
29 | TANIM T R, PAUL P P, THAMPY V, et al. Heterogeneous behavior of lithium plating during extreme fast charging[J]. Cell Reports Physical Science, 2020, 1(7): doi: 10.1016/j.xcrp.2020.100114. |
30 | HSIEH Y C, LEIING M, NOWAK S, et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy[J]. Cell Reports Physical Science, 2020, 1(8): doi: 10.1016/j.xcrp.2020.100139. |
31 | XIANG Y X, TAO M M, ZHONG G M, et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries[J]. Science Advances, 2021, 7(46): doi: 10.1126/sciadv.abj3423. |
32 | GOTOH K, IZUKA M, ARAI J, et al. In situ 7Li nuclear magnetic resonance study of the relaxation effect in practical lithium ion batteries[J]. Carbon, 2014, 79: 380-387. |
33 | FANG C C, LI J X, ZHANG M H, et al. Quantifying inactive lithium in lithium metal batteries[J]. Nature, 2019, 572(7770): 511-515. |
34 | MCSHANE E J, COLCLASURE A M, BROWN D E, et al. Quantification of inactive lithium and solid-electrolyte interphase species on graphite electrodes after fast charging[J]. ACS Energy Letters, 2020, 5(6): 2045-2051. |
[1] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[2] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[3] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[4] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[5] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[6] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[7] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[8] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[9] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[10] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[11] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[12] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[13] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[14] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[15] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||