Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (6): 957-966.doi: 10.12028/j.issn.2095-4239.2018.0165
Previous Articles Next Articles
REN Dongsheng1, FENG Xuning1,2, HAN Xuebing1, LU Languang1, OUYANG Minggao1
Received:
2018-08-31
Revised:
2018-09-10
Online:
2018-11-01
Published:
2018-10-19
Contact:
10.12028/j.issn.2095-4239.2018.0165
CLC Number:
REN Dongsheng, FENG Xuning, HAN Xuebing, LU Languang, OUYANG Minggao. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966.
[1] 何向明, 冯旭宁, 欧阳明高. 车用锂离子动力电池动力电池系统的安全性[J]. 科技导报, 2016, 34 (6):32-38. HE X M, FENG X N, OUYANG M G. On the safety issues of lithium ion battery[J]. Science & Technology Review, 2016, 34 (6):32-38. [2] FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:A review[J]. Energy Storage Materials, 2018, 10:246-267. [3] 李惠, 吉维肖, 曹余良, 等. 锂离子电池热失控防范技术[J]. 储能科学与技术, 2018, 7 (3):376-383. LI H, JI W X, CAO Y L, et al. Thermal runaway-preventing technologies for lithium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7 (3):376-383. [4] 谢潇怡, 王莉, 何向明, 等. 锂离子动力电池安全性问题影响因素[J]. 储能科学与技术, 2017, 6 (1):43-51. XIE X Y, WANG L, HE X M, et al. The safety influencing factors of lithium batteries[J]. Energy Storage Science and Technology, 2017, 6 (1):43-51. [5] 卢兰光, 李建秋, 华剑锋, 等. 电动汽车锂离子电池管理系统的关键技术[J]. 科技导报, 2016, 34 (6):39-51. LU L G, LI J Q, HUA J F, et al. A review of the key issues of the lithium-ion battery management[J]. Science & Technology Review, 2016, 34 (6):39-51. [6] LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226:272-288. [7] RUIZ V, PFRANG A, KRISTON A, et al. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2018, 81:1427-1452. [8] 北京市示范应用新能源小客车生产企业及产品审核备案管理细则. http://www.bjxnyqc.org/news/detail/538. [9] LIH W C, YEN J H, SHIEH F H, et al. Second use of retired lithium-ion battery packs from electric vehicles:Technological challenges, cost analysis and optimal business model[C]//Proceedings of International Symposium on Computer, Consumer and Control, Taiwan, 2012. [10] WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224. [11] WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues:Existing problems and possible solutions[J]. Materials Express, 2012, 2 (3):197-212. [12] FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275:261-273. [13] ZHU J E, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018, 378:153-168. [14] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact[J]. Journal of Power Sources, 2014, 267:78-97. [15] KRISTON A, PFRANG A, DÖRING H, et al. External short circuit performance of graphite-LiNi1/3Co1/3Mn1/3O2 and graphite-LiNi0.8Co0.15Al0.05O2 cells at different external resistances[J]. Journal of Power Sources, 2017, 361:170-181. [16] ZHANG L L, CHENG X Q, MA Y L, et al. Effect of short-time external short circuiting on the capacity fading mechanism during long-term cycling of LiCoO2/mesocarbon microbeads battery[J]. Journal of Power Sources, 2016, 318:154-162. [17] OUYANG M G, REN D S, LU L G, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+LiyMn2O4 composite cathode[J]. Journal of Power Sources, 2015, 279:626-635. [18] REN D S, FENG X N, LU L G, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources, 2017, 364:328-340. [19] GUO R, LU L G, OUYANG M G, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6:30248. [20] ROTH E P, DOUGHTY D H. Thermal abuse performance of high-power 18650 Li-ion cells[J]. Journal of Power Sources, 2004, 128 (2):308-318. [21] FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255:294-301. [22] FENG X N, SUN J, OUYANG M G, et al. Characterization of large format lithium ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272:457-467. [23] NAM K W, BAK S M, HU E, et al. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2013, 23:1047-1063. [24] BAK S, NAM K, CHANG W, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials[J]. Chemistry of Materials, 2013, 25:337-351. [25] LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, doi:10.1016/j.joule.2018.06.015. [26] REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228:633-644. [27] HUANG P F, WANG Q S, LI K, et al. The combustion behavior of large scale lithium titanate battery[J]. Scientific Reports, 2015:1-12. [28] PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285:80-89. [29] ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145 (10):3647-3667. [30] HAN X B, OUYANG M G, LU L G, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle:Aging mechanism identification[J]. Journal of Power Sources, 2014, 251:38-54. [31] OUYANG M G, FENG X N, HAN X B, et al. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery[J]. Applied Energy, 2016, 165:48-59. [32] BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341:373-386. [33] VETTER J, NOVÁK P, WAGNER M R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147:269-281. [34] WOHLFAHRT-MEHRENS M, VOGLER C, GARCHE J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources, 2004, 127 (1/2):58-64. [35] ZHENG H H, SUN Q N, LIU G, et al. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells[J]. Journal of Power Sources, 2012, 207:134-140. [36] LU C H, LIN S W. Dissolution kinetics of spinel lithium manganate and its relation to capacity fading in lithium ion batteries[J]. Journal of Materials Research, 2002, 17 (6):1476-1481. [37] AGUBRA V, FERGUS J. Lithium ion battery anode aging mechanisms[J]. Materials, 2013, 6 (4):1310-1325. [38] PELED E, MENKIN S. Review-SEI:Past, present and future[J]. Journal of the Electrochemical Society, 2017, 164 (7):A1703-A1719. [39] YAZAMI R, REYNIER Y F. Mechanism of self-discharge in graphite-lithium anode[J]. Electrochimica Acta, 2002, 47 (8):1217-1223. [40] BROUSSELY M, BIENSAN P, BONHOMME F, et al. Main aging mechanisms in Li ion batteries[J]. Journal of Power Sources, 2005, 146 (1/2):90-96. [41] VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55 (22):6332-6341. [42] LIU P, WANG J, HICKS-GARNER J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of the Electrochemical Society, 2010, 157 (4):A499-A507. [43] LI Z, HUANG J, LIAW B Y, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254:168-182. [44] YANG X G, LENG Y J, ZHANG G S, et al. Modeling of lithium plating induced aging of lithium-ion batteries:Transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360:28-40. [45] YANG X G, ZHANG G S, GE S S, et al. Fast charging of lithium-ion batteries at all temperatures[J]. PNAS, 2018, doi:10.1073/pnas. 1807115115. [46] CHU Z Y, FENG X N, LU L G, et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model[J]. Applied Energy, 2017, 204:1240-1250. [47] REN D S, SMITH K, GUO D X, et al. Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model[J]. Journal of the Electrochemical Society, 2018, 165 (10):A2167-A2178. [48] OUYANG M G, CHU Z Y, LU L G, et al. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles[J]. Journal of Power Sources, 2015, 286:309-320. [49] LI H F, GAO J K, ZHANG S L. Effect of overdischarge on swelling and recharge performance of lithium ion cells[J]. Chinese Journal of Chemistry, 2008, 26 (9):1585-1588. [50] MALEKI H, HOWARD J N. Effects of overdischarge on performance and thermal stability of a Li-ion cell[J]. Journal of Power Sources, 2006, 160 (2):1395-1402. [51] ZHOU P, SUN L, ZHENG Y, et al. Experimental study on charicteristics of overdischarged Li-NCM batteries[J]. Journal of Automotive Safety and Energy, 2017, 8 (1):72-78. [52] BÖRNER M, FRIESEN A, GRÜTZKE M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries[J]. Journal of Power Sources, 2017, 342:382-392. [53] FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources, 2015, 274:432-439. [54] 黄海江. 锂离子电池安全性研究及影响因素分析[D]. 上海:中国科学院上海微系统与信息技术研究所, 2005. HUANG H J. Study on safety of lithium-ion batteries[D]. Shanghai:Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 2005. [55] HUANG H J, XIE J Y. Over-charge performance of lithium ion batteries after different cycles[J]. Chinese Journal of Power Sources, 2005, 29 (10):633-636. [56] 张磊. 锂离子电池安全性影响因素研究[M]. 秦皇岛:燕山大学, 2012. ZHANG L. Study on influencing factors of safety for lithium battery[M]. Qinhuangdao:Yanshan University, 2012. [57] HILDEBRAND S, RHEINFELD A, FRIESEN A, et al. Thermal analysis of LiNi0.4Co0.2Mn0.4O2/mesocarbon microbeads cells and electrodes:State-of-charge and state-of-health influences on reaction kinetics[J]. Journal of the Electrochemical Society, 2018, 165 (2):A104-A117. [58] WALDMANN T, QUINN J B, RICHTER K, et al. Electrochemical, post-mortem, and ARC analysis of Li-ion cell safety in second-life applications[J]. Journal of the Electrochemical Society, 2017, 164 (13):A3154-A3162. [59] Sandia National Laboratories. Advanced technology development program for lithium-ion batteries:Thermal abuse performance of 18650 Li-ion cells[R]. Sandia National Laboratories, 2004. [60] 王绥军, 傅凯, 官亦标, 等. 软包磷酸铁锂电池低温热安全性能研究[J]. 储能科学与技术, 2016, 5 (2):204-209. WANG S J, FU K, GUAN Y B, et al. Low temperature thermal safety performance of soft packaged lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2016, 5 (2):204-209. [61] FRIESEN A, HORSTHEMKE F, MÖNNIGHOFF X, et al. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells:Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis[J]. Journal of Power Sources, 2016, 334:1-11. [62] FRIESEN A, HILDEBRAND S, HORSTHEMKE F, et al. Al2O3 coating on anode surface in lithium ion batteries:Impact on low temperature cycling and safety behavior[J]. Journal of Power Sources, 2017, 363:70-77. [63] WALDMANN T, WOHLFAHRT-MEHRENS M. Effects of rest time after Li plating on safety behavior-ARC tests with commercial high-energy 18650 Li-ion cells[J]. Electrochimica Acta, 2017, 230:454-460. [64] TOBISHIMA S, YAMAKI J, HIRAI T. Safety and capacity retention of lithium ion cells after long periods of storage[J]. Journal of Applied Electrochemistry, 2000, 30 (4):405-410. [65] WU Y F, BRUN-BUISSON D, GENIES S, et al. Thermal behavior of lithium-ion cells by adiabatic calorimetry:One of the selection criteria for all applications of storage[J]. ECS Transactions, 2009, 16 (29):93-103. [66] ZHANG J B, SU L S, LI Z, et al. The evolution of lithium-ion cell thermal safety with aging examined in a battery testing calorimeter[J]. Batteries, 2016, 2 (2):12. [67] RÖDER P, STIASZNY B, ZIEGLER J C, et al. The impact of calendar aging on the thermal stability of a LiMn2O4-Li (Ni1/3Mn1/3Co 1/3)O2/graphite lithium-ion cell[J]. Journal of Power Sources, 2014, 268:315-325. [68] WU M S, CHIANG P C J, LIN J C, et al. Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests-short-circuit tests[J]. Electrochimica Acta, 2004, 49 (11):1803-1812. [69] GRANDJEAN T, BARAI A, HOSSEINZADEH E, et al. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management[J]. Journal of Power Sources, 2017, 359:215-225. [70] HENDRICKS C, WILLIARD N, MATHEW S, et al. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries[J]. Journal of Power Sources, 2015, 297:113-120. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[8] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[9] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[10] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[11] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[12] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[13] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[14] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[15] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||