1 |
International Energy Agency. CO2 emissions in 2022[EB/OL]. https://www.iea.org/reports/CO2-emissions-in-2022.
|
2 |
LI Q, LI C, DU Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806.
|
3 |
GHANI S A A, JAMARI S S, ABIDIN S Z. Waste materials as the potential phase change material substitute in thermal energy storage system: A review[J]. Chemical Engineering Communications, 2021, 208(5): 687-707.
|
4 |
WANG T Y, ZHANG T Y, XU G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110328.
|
5 |
LIU P, GU X B, RAO J, et al. Preparation and thermal properties of lauric acid/raw fly ash/carbon nanotubes composite as phase change material for thermal energy storage[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(11): 934-944.
|
6 |
QIU F, SONG S K, LI D N, et al. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash[J]. Journal of Cleaner Production, 2020, 246: 118952.
|
7 |
何镐东, 杨林, 曹建新. 黄磷渣与硫酸钠-氯化钠制备高温复合相变储能材料[J]. 无机盐工业, 2023, 55(2): 126-131.
|
|
HE H D, YANG L, CAO J X. Preparation of high temperature composite phase change energy storage materials by yellow phosphorus slag and Na2SO4-NaCl[J]. Inorganic Chemicals Industry, 2023, 55(2): 126-131.
|
8 |
王辉祥, 熊亚选, 任静, 等. Na2CO3/电石渣复合相变储热材料制备与性能[J]. 储能科学与技术, 2022, 11(12): 3819-3827.
|
|
WANG H X, XIONG Y X, REN J, et al. Fabrication and performance investigation of Na2CO3/Carbide slag shape-stable phase change composites[J]. Energy Storage Science and Technology, 2022, 11(12): 3819-3827.
|
9 |
熊亚选, 王辉祥, 胡子亮, 等. 电石渣骨架定型相变材料储热性能研究[J]. 综合智慧能源, 2022, 44(4): 71-75.
|
|
XIONG Y X, WANG H X, HU Z L, et al. Study on thermal storage performance of carbide slag skeleton-shaped phase change materials[J]. Integrated Intelligent Energy, 2022, 44(4): 71-75.
|
10 |
药晨华, 熊亚选, 任静, 等. 硝酸钠/兰炭灰复合相变储热材料的制备及性能[J]. 复合材料学报, 2023, 40(1): 300-309.
|
|
YAO C H, XIONG Y X, REN J, et al. Preparation and properties of sodium nitrate/charcoal ash composite phase change thermal storage material[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 300-309.
|
11 |
熊亚选, 药晨华, 宋超宇, 等. 低成本兰炭灰骨架定型相变储热材料的制备及性能研究[J]. 华电技术, 2021, 43(7): 62-67.
|
|
XIONG Y X, YAO C H, SONG C Y, et al. Preparation and properties of low-cost phase-change heat storage materials based on semi-coke ash[J]. Huadian Technology, 2021, 43(7): 62-67.
|
12 |
宋超宇, 熊亚选, 张金花, 等. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287.
|
|
SONG C Y, XIONG Y X, ZHANG J H, et al. Preparation and performance study of incinerated slag based shape-stable phase change composites[J]. CIESC Journal, 2022, 73(5): 2279-2287.
|
13 |
王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340.
|
|
WANG Y, HUANG Y, YAO H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340.
|
14 |
XIONG Y X, WANG H X, WU Y T, et al. Carbide slag based shape-stable phase change materials for waste recycling and thermal energy storage[J]. Journal of Energy Storage, 2022, 50: 104256.
|
15 |
XIONG Y X, YAO C H, REN J, et al. Waste semicoke ash utilized to fabricate shape-stable phase change composites for building heating and cooling[J]. Construction and Building Materials, 2022, 361: 129638.
|
16 |
XIONG Y X, SONG C Y, REN J, et al. Sludge-incinerated ash based shape-stable phase change composites for heavy metal fixation and building thermal energy storage[J]. Process Safety and Environmental Protection, 2022, 162: 346-356.
|
17 |
XIONG Y X, SUN M Y, WU Y T, et al. Effects of synthesis methods on thermal performance of nitrate salt nanofluids for concentrating solar power[J]. Energy & Fuels, 2020, 34(9): 11606-11619.
|
18 |
任国宏, 廖洪强, 吴海滨, 等. 粉煤灰、电石渣及其配合物碳酸化特性[J]. 环境工程学报, 2018, 12(8): 2295-2300.
|
|
REN G H, LIAO H Q, WU H B, et al. Carbonation characteristics of fly ash, carbide slag and their mixtures[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2295-2300.
|
19 |
YU Q, LU Y W, ZHANG C C, et al. Preparation and thermal properties of novel eutectic salt/nano-SiO2/expanded graphite composite for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110590.
|
20 |
GUO Q, WANG T. Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material[J]. Thermochimica Acta, 2015, 613: 66-70.
|
21 |
ANAGNOSTOPOULOS A, NAVARRO M E, STEFANIDOU M, et al. Red mud-molten salt composites for medium-high temperature thermal energy storage and waste heat recovery applications[J]. Journal of Hazardous Materials, 2021, 413: 125407.
|
22 |
XIONG Y X, WANG H X, REN J, et al. Carbide slag recycling to fabricate shape-stable phase change composites for thermal energy storage[J]. Journal of Energy Storage, 2023, 60: 106694.
|
23 |
XU G Z, LENG G H, YANG C Y, et al. Sodium nitrate-diatomite composite materials for thermal energy storage[J]. Solar Energy, 2017, 146: 494-502.
|
24 |
LIAO Z R, XU C, REN Y X, et al. A novel effective thermal conductivity correlation of the PCM melting in spherical PCM encapsulation for the packed bed TES system[J]. Applied Thermal Engineering, 2018, 135: 116-122.
|
25 |
NIETO J T. Feature based costing of extruded parts[D]. Urbana, IL, USA: University of Illinois, 2010
|
26 |
RAHJOO M, GORACCI G, MARTAUZ P, et al. Evidence gathering: Thermal energy storage (TES) technologies[R]. Department for Energy Security and Net Zero, 2022
|